Loading...
18-013 (10) SGA Design Group, P.c. 1437 South Boulder,Suite 550 TRANSMITTAL Tulsa,Oklahoma 74119.3609 p:918.587.8600 f:918.587.8601 www.sgadesigngroup.com Date 4/21/15 Attention Louis Hasbrouck From Trevor Jacques Company City of Hampton SGA Proj. # 1452013 212 Main Street Project Name Northampton, MA Suite/Bldg 2901 City/ST/Zip Northampton MA 01060 Routing Country United States Copy Phone (413) 587-1240 Fax E-mail Iasbrouck@northamptonma.gov Quantity Descripton 2 Signed and Seated Sets of Drawings 1 CD of Drawings 1 CD of Specifications 1 Check (Permit Fee) 1 Signed and Sealed Initial Construction Control Documents 2 Structural Calcs 1 Application Remarks Mr. Hasbrouck, Find the aforementioned documents enclosed for permit review on Walmart store #2901 - Northampton, MA located at 180 North King Street. If there is any additional information needed or if you have any questions please contact me. Thank you, Trevor Jacques SGA Design Group (918) 587-8602 Ext. 227 trevorj @sgadesigngroup.com Signed SGA Design Group, P.c. TRANSMITTAL 1437 South Boulder,Suite 550 Tulsa,Oklahoma 74119.3609 P:918.587.8600 f:918.587.8601 www.sgadesigngroup.com Date 4/21/15 Attention Louis Hasbrouck From Trevor Jacques Company City of Hampton SGA Proj. # 1452013 212 Main Street Project Name Northampton, MA Suite/Bldg 2901 City/ST/Zip Northampton MA 01060 Routing Country United States Copy Phone (413) 587-1240 Fax E-mail iasbrouck@northamptonma.gov Quantity Descripton 2 Signed and Sealed Sets of Drawings 1 CD of Drawings I� Sthafa�� padcase, 1 CD of Specifications 1 Check (Permit Fee) 1 Signed and Sealed Initial Construction Control Documents 2 Structural Calcs 1 Application Remarks Mr. Hasbrouck, Find the aforementioned documents enclosed for permit review on Walmart store #2901 - Northampton, MA located at 180 North King Street. If there is any additional information needed or if you have any questions please contact me. Thank you, Trevor Jacques SGA Design Group (918) 587-8602 Ext. 227 trevod @sgadesigngroup.com igned Section 1613.5.6 — Determination of seismic design category TABLE 1613.5.6(1) SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD RESPONSE ACCELERATION OCCUPANCY CATEGORY VALUE OF SDs I or II III IV Sps < 0.167g A A A 0.167g :5 Sps < 0.33g B B C 0.33g :5 Sps < 0.50g C C D 0.50g 5 Sps D D D For Occupancy Category = I and SDS = 0.239 g, Seismic Design Category = B TABLE 1613.5.6(2) SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION OCCUPANCY CATEGORY VALUE OF SDI I or II III IV SDI < 0.067g A A A 0.067g <_ SDI < 0.133g B B C 0.133g < SDI < 0.20g C C D 0.20g 5 SDI D D D For Occupancy Category = I and SDI = 0.106 g, Seismic Design Category = B Note: When S, is greater than or equal to 0.75g, the Seismic Design Category is E for buildings in Occupancy Categories I, II, and III, and F for those in Occupancy Category IV, irrespective of the above. Seismic Design Category = "the more severe design category in accordance with Table 1613.5.6(1) or 1613.5.6(2)" = B Note: See Section 1613.5.6.1 for alternative approaches to calculating Seismic Design Category. References 1. Figure 1613.5(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2006- Figure 1613_5(01).pdf 2. Figure 1613.5(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2006- Figure 1613_5(02).pdf I In the equations below, the equation number corresponding to the 2006 edition is listed first, and that corresponding to the 2009 edition is listed second. Equation (16-37; 16-36): SMs = FaSs = 1.600 x 0.224 = 0.358 g Equation (16-38; 16-37): SM1 = F„S1 = 2.400 x 0.066 = 0.159 g Section 1613.5.4 — Design spectral response acceleration parameters Equation (16-39; 16-38): SDS = Z/3 SMS = 2/ x 0.358 = 0.239 g Equation (16-40; 16-39): Sol = Z/3 SM1 = Z/ x 0.159 = 0.106 g 4 Section 1613.5.3 - Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters TABLE 1613.5.3(1) VALUES OF SITE COEFFICIENT F, Site Class Mapped Spectral Response Acceleration at Short Period SS < 0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS ? 1.25 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 F See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of SS For Site Class = D and SS = 0.224 g, F. = 1.600 TABLE 1613.5.3(2) VALUES OF SITE COEFFICIENT F, Site Class Mapped Spectral Response Acceleration at 1-s Period S, :50.10 5, = 0.20 S, = 0.30 5, = 0.40 S1 ? 0.50 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.7 1.6 1.5 1.4 1.3 D 2.4 2.0 1.8 1.6 1.5 E 3.5 3.2 2.8 2.4 2.4 F See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S, For Site Class = D and S, = 0.066 g, F„ = 2.400 LW Design Maps Detailed Report 2006/2009 International Building Code (42.3414 0N, 72.6439°W) Site Class D - "Stiff Soil", Occupancy Category I/II/III Section 1613.5.1 — Mapped acceleration parameters Note: Maps in the 2006 and 2009 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.5.3. From Figure 1613.5(1) ill Ss = 0.224 g From Figure 1613.5(2) E23 S1 = 0.066 g Section 1613.5.2 — Site class definitions SITE SOIL Soil shear wave Standard penetration Soil undrained shear CLASS PROFILE velocity, vs, (ft/s) resistance, N strength, s., (psf) NAME A Hard rock VS > 5,000 N/A N/A B Rock 2,500 < vs 5 5,000 N/A N/A _ _ _..__._.--.--- _�. _ C Very dense 1,200 < vs 5 2,500 N > So >2,000 psf soil and soft rock _ .. D Stiff soil 600 <_ vs < 1,200 15 5 N <_ 50 1,000 to 2,000 psf profile E Stiff soil v5 < 600 N < 15 <1,000 psf profile E — Any profile with more than 10 ft of soil having the characteristics: 1. Plasticity index PI > 20, 2. Moisture content w ? 40%, and 3. Undrained shear strength s„ < 500 psf F — Any profile containing soils having one or more of the following characteristics: 1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils. 2. Peats and/or highly organic clays (H > 10 feet of peat and/or highly organic clay where H = thickness of soil) 3. Very high plasticity clays (H > 25 feet with plasticity index PI > 75) 4. Very thick soft/medium stiff clays (H > 120 feet) For SI. 1ft/s 0.3048 m/s 1lb/ft2 = 0.0479 kN/m2 USGS Design Maps Summary Report User-Specified Input Report Title #2901 Fri August. 22, 2014 13.23:57 UTC Building Code Reference Document 2006/2009 International Building Code 'Which utilizes USGS hazard data available in 2002) Site Coordinates 42.3414 0N, 72.6439°W Site Soil Classification Site Class D - "Stiff Soil" Occupancy Category I/II/III 2m 584i 4m'�i Williamsburg An'therst 61�isb�e Mill ct'tacrFord � 5 t� H � � 4,Ss���ih Arrttn�ta*t < N rkhamp�ton 0 R C.i � O A M E R I Cti.: �e rnaMues;_., ! (b Maip4uest USGS-Provided Output SS = 0.224 g Sh1s = 0.358 g SoS = 0.239 g S1 = 0.066 g SM1 = 0.159 g Sp, = 0.106 g MCE Response Spectrum Design Response Spectrum 0.36 0.24 0.32 0.21 4.28 0.18 0.24 CA 0.15 M 0.20 0.12 0.16 0.05 0.12 0.05 0.08 0.04 0.03 0.00 t 0.00 o.00 0.20 0.40 0.60 4.00 1.00 1.20 1.40 1.60 1.80 2.00 0.00 0.20 0.40 0.&0 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Period, T(sec) Period, T(sec) Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter kno fledge. Seismic Design Rack D P " 1403002901 52 52 i'i.n- Nonharrpton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) H/2 X-X H/2 MAV 04/14/15 Punching Shear Check: (Design per section 22.5.4 ACI 318.08) Q Max.Factored Vertical Load(P,J= 2978 Ws C14 I° - (\ Max Vertical Load(ASD)-RMI,sect 2.1-LC#4: Slab Concrete fc= 3500 psi i ° - S I P=(1+O.11S�)DL+(3/4)[(1+0.14S�)PL+(0.7)ELJ Slab thickness(t)= 5 in. Sm= 0.239(Ip=1) Rack Post X-X= 5 in. FrT- a 1 DL=(Frame WI/2)= 125 Ibs Rack Post Y-Y= 3.75 in. I 0 'I >- PL=Y(Shelf Load h,-h9)/2= 2400 Ibs b,= 37.50 in. 1 - EL=MOT,jai/((0.7)(D))= 668 Ibs P= 1.33 - - CV e a I \ P= 2223 Ibs<--At Each Post V�= 36975 Ibs Eq.(22-10) __� _ V„max= 29506 Ibs Eq.(22-10) �- Max Vertical Load(LRFD)-RMI,sect 2.2-LC#5: WV= 17704 Ibs b0 P=(1.2+0.2 SO,,)DL+(0.85+0.2S_)PL+EL VAV,.,= 0.168<1_0O.K. (Punching Perimeter) P = 2978lbs<--At Each Post Slab tension based on Soil bearing area check: I ii:. nEAra FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Alowable soil bearing= 1500 psf ROTATE AT OTHER-UNFFORiALY DISTRIBUTED LOAD Max.Service Vertical Load(P)= 2223 Ibs a Area regd.for bearing(A,,,e)= 1.48 ft2 { toz.r€gtllr onirwm Loan "b"distance= 14.61 in �7 --v r�r Slab thickness(t)= 5.00 in _ a v, , S=(1")(t)'/6= 4.17 ins /in pM,w(tension allowable)_��7.5•[(r�)'�pS= 1109.26 in-lb/in - a I ,� nt, �as tlMwtw•ea� Factored uniform bearing,w„=P„/A„ya= 13.95 lb/in/in M„=wL�/3=(w„)[(b-min(X-X,Y-Y))12)2]/3= 137.14 in-lb/in-Defl.End MI=69 in-lb/in }t�yTy -:+az r N„ - s M W � M LI 'Y (>ttlMep,d+rtl nt „�� � iaEl + f S9EIx�� Rack FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in + ?<I Slab thickness(t)= 5.0 in Modulus of Rupture,f,=7.5'SDRT(fc)- 443.7 psi Concrete Slab Section Modulus,S=b(t)2/6= 50.0 inslft Allowable Concrete Slab Bending Moment,M,4FS=S•f,l1 5- 1232.5 fl'Ibs/ft Effective Cantilever Span Length(Ij at M,,,= 6.3 it _ Total Length of Slab(I,+Width of Single Rack)= 8.3 fl ^ I L E L Trib.Width of Slab=Trib v idth of Rack= 8.0 ft is[ i ",{ ? �<< Weight of Concrete Slab at Rack(P )= 4140.1 Ibs Resisting Moment-Concrete Slab at Rack,MasT,m)=P-*1./2= 205684 in•lbs L C, '" Load Combination#1: MOT oT- 7516 in•Ibs t Masr(rsak>+Masr(zme)= 247276 in•Ibs Total Overturning FOS= 32.898 OK -)i }t Load Combination#2: MOT= 4226 in`Ibs ° Masrtwxq+ Masr(me)= 205684 in`Ibs ...... ...,--. Total Overturning FOS= 48.667 OK Seismic Rack D Seismc Design Project No Sheet No'. O£ Rack D 1403002901 51 52 Supported on Elevated Floor(Y/N): No Project Name. Northampton,MA-#2901 Seismic Importance Factor(1p)= 1.0 <-No Public Access Allowed(Typ.at Back Stockroom/Grocery Storage Areas) Made By: MAV 04/14/15 Checked By Date: IBC 2009 /ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Max.Weight per level(2 Pallets/shelf)= 1200 lbs/shelf Weight of Unit= 250#<---Shipping weight per Manuf. Rack Trib width(CL-to-CL of frames)= 96 in Total Shelf Load J hs= 0 in 0 lbs 7 hs= 0 in 0 lbs ...q. ____. ._..__.. ........_ a--.,l-r► ITT= 0 in 0 lbs � Si is hs= 0 in O lbs - ---. __ ._- _.. hS= 0 in 0 lbs h,= 36 in 1200lbs 'J hs= 36 in 1200lbs h,= 36 in 1200lbs ht= 12 in 1200lbs Total Shelf Height,H,= 120 in _ Unit Height,H„= 120 in (. :20' si ri'aN 41 4 LEVEMS Unit Base Depth,D= 24 inr ---• - „ -___ Load Case 1"fLuae=eves Per RMI sect.2.6.8) Load Case 2'(Load does per RMI sect 2.8.8) Seisme I- (Ip)= 0.043 W.(Braced) Seismic(C,)(lo)= 0.043 W,(Braced) 0.011 W.(Down Aisle) 0.011 W,(Down Aisle) a1 W,=0.67[(0.67)PL]+DL= 2404.7 lbs W,=0.67[(l)PL]+DL= 1054.0 lbs { Base Shear,V=Cj^= 103.2 lbs(Braced) Base Shear,V=CjpW,= 45.2 lbs(Braced) § fir,, gg 25.7 lbs(Down Aisle) 11.3 lbs(Down Aisle) n d E Horizontal forces/level,F.=CV(RMI sect 26.6) Horizontal forces I level,F.=CV(RMI sect 26 6) -- -•° °° °° °°°° .- 1 (Service Loads,E=03) Fe= 0.0 lbs @ 0 in(CM) (Service Loads) Fs= 0.0 lbs ggg Note: F. O.O lbs @ 0 in(CM) F5= 0.0 lbs " (CM)=Product Center of Mass Fr= 0.0 lbs @ 0 in(CM) FT= 0.0 lbs typically 20 inches above F5= 0.0 lbs @ 0 in(CM) F5= 0.0 lbs _ __T._..._.............._............_..__ ) ._. the top of shelf at each level. Fs= 0.0 lbs @ 0 in(CM) FS= 0.0 lbs F,= 28.9 lbs @ 144 in(CM) F,= 29.1 lbs 140 in(CM t, F,= 20.4 lbs @ 102 in(CM) FS= 0.0 lbs . Fz= 13.2 lbs @ 66 in(CM) Fz= 0.0 lbs F,= 6.0 lbs @ 30 in(CM) Ft= 0.0 lbs F„= 3.7 lbs @ 60 in(CM) Fu= 2.6 lbs @ 60 in(CM) Xf,= 103.2 lbs(@ Factored Loads) Ft,= 45.2 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ff;h; Calculate Overturning Moment(Service),MOT=Ff;hj Note: Per ANSI MH16.1:2008(RMI 2008)Section 6.3, MOT= 7516 in-lbs MOT= 4226 in-lbs effective lengths may be determined by rational methods Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST consistent with AISI or AISC.AISC Design by Second-Order MRST= 41592 in-lbs MRST= 17400 in-lbs Analysis,Section C2.2a is used. Notional Ieads are applied to gravity load cases and K=1.0 is used since the ratio of Factor of Safety Factor of Safety second-order drift to first-order drift P-b/(P-A) 1.1. FOS=5.53 FOS=4.12 "Load cases are per ASCE 7-05 sect.15.5.3.2 ^" ; 3 Reactions(Service Loads): LC#1 LC#2 a R.= 36 Ibs 16 lbs m ? R,= 0 lbs 0 lbs Overturning FOS= 5.534-1.5 4.117>=1.5 Sliding Restraint,RRST/FOS=379lbs 110.487>=1.5 OK 1761bs/11.1>=1.5 OK Reactions(Factored Loads): LC#1 LC#2 ' Base Shear(R,)= 52 lbs 23 lbs Net Uplift(Ry)= 0 lbs 0 lbs Overturning+Gravity(P„)= 2978 lbs 1070 lbs Upright Post Type= UA - 1.,....... .^a ...�. ...-_.. a Anchor Design(using"Cracked Concrete"Properties) Try:1/2"0 Powers Wedge-Bolt+Screw Anchor 2 1/2"embed. Embedment= 2.5 in __.. . . .* .; .. 1a= 3500 psi i { a., 1.875 in<_-Eccen.Of Anchor h,= 1.65 in 1.5(hd)=2.5 in f. Cones thickness,t= 5 in #of Anchors,n= 1 Sx= 0 i Sy= 0 in Shear Allowables Aw= 0.168 in' Steel Strength(0.75)�V„= 3591 lbs<-ACI 318-08 Eq D-20 Tension Allowables Concrete breakout Y dir.(0.75)0V,ss= 1283 lbs<--Act 318-08 Eq D-22 Steel Strength(0.75)¢Ns,= 8190 lbs<_ACI 318-08 Eq D-3 Concrete breakout X dir.Single(0.75)+Vc,= 1283 lbs<_ACI 318-08 Eq D-22 Concrete Breakout(0.75)0Nb,,= 591 lbs<--ACI 318-08 Eq D-5 Concrete breakout X dir.(all anchors)(0.75)OV,sp= 1283 lbs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)+N,= 779 lbs<-ACI 318-08 Eq D-14 Concrete pryout¢V.,= 637 lbs<-Act 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs(LC#1) 0 Ibs(LC#2) LC#1 LC#2 MIN((pNsa,,pNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) Factored Shear Load(V„): Braced= 52 lbs 23 lbs max tension stress ratio(TSR)= 0.000 OK(LC#1) 0.000 OK(LC#2) Down Aisle= 13 lbs 6 lbs Combined shear and tension stress ratio: max shear stress ratio(VSR): Braced= 0.081 OK 0.036 OK Braced(TSR+VSR<=1.2)= 0.081<=1.2 OK-LC#1 Controls Down Aisle= 0.020 OK 0.009 OK Down Aisle(VSR-1.0)= 0.020 OK-LC#1 Controls USE: (1)1/2"W Powers Wedge-Bolt+Screw Anchor 2 1/2"embed. ICC REPORT#ESR-2526 Seismic Rack D Seismic Design Rack C 1403002901 50 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) H/2 X-X 11H/2 MAV 04114115 Punching Shear Check: Ney (Design per section 22.5.4 ACI 318-08) , 4 v4 N Max.Factored Vertical Load(Pn)= 5468 Ibs I° a ° Max Vertical Load(ASD)-RMI,sect 2.1-LC#4: Slab Concrete fc= 3500 psi I - = I P=(i+0.11S�)DL+(3/4)[(1+0.14S�)PL+(0.7)EL] Slab thickness(t)= 5 in. I �4° S.= 0.239(lp=1) Rack Post X-X= 5 in. 4° DL=(Frame Wt/2)= 125 Ibs Rack Post Y-Y= 175 in. I -.I } PL=E(Shelf Load ht-N)/2= 5000 Ibs bn= 37.50 in l - EL=MOT,-1/((0.7)(D))= 824 Ibs P= 1.33 CV 14 - I \ P= 4293 Ibs<--At Each Post Vn= 36975 Ibs Eq.(22-10) Vn max= 29506 lbs .(22-10) E --------� Eq. � c Max Vertical Load(LRFD)-RMI,sect 2.2-LC#5: WV= 17704 Ibs b0 P=(1.2+02S,x,)DL+(0.85+0.2Soi)PL+EL VJWn= 0.309<1.0 O.K. (Punching Perimeter) P = 5468 lbs<--- At Each Post Slab tension based on Soil bearing area check: I'- REAhl FIXED AT ONE 11111,FREE'10 DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psi I ROTATE AT OTHER-UNIFORMLY DISTRIBUTED LOAD Max.Service Vertical Load(P)= 4293 Ibs t Area reqd.for bearing(A,.,)= 2.86 ft' Tots Earl•Uniform Loan -a.k; "b'distance= 20.30 in Slab thickness(t)= 5.00 in S=(1')(1)2/6= 4.17 in3/in i fA,nax.�ax a:ee a++d� _wi• +MM(tension allowable)-p,`ZS'[(f,)' ]`S= 1109.26 in-lb/in Factored uniform bearing wn=P„/A�= 13.27 Ib/in/in M„=w - ...1-213=(w„)[(b-min(X-X,Y-Y))/2)']13= 302.88 in-lb/in-Defl.End MI=152 in-lb/in •-•nz I _b amaa, rat aMeated erd MAW,= 0.273<1.0 O.K. Rack FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 44 in t} y k Slab thickness(t)= 5.0 in - ```fff��' Modulus of Rupture,f,=7.5`SDRT(fc)= 443.7 psi .`� xr Concrete Slab Section Modulus,S=b(t)2/6= 50.0 in'/ft `"- $I Allowable Concrete Slab Bending Moment,M,,,/FS-S`f,/i 5- 1232.5 ft`Ibs/ft Effective Cantilever Span Length(In)at Mwl= 6.3 R t Total Length of Slab(I,+Width of Single Rack)= 9.9 ft - L t �'� Trib.Width of Slab=Trib width of Rack= 8.0 ft / Weight of Concrete Slab at Rack(P_)= 4973.4 Ibs fit Resisting Moment-Concrete Slab at Rack,MRST(-)=P.`I,/2= 296819 in`Ibs Load Combination#1: MOT= 16986 in`lbs M s T( d)+MAST(-)=MAST(W)= 449719 in`lbs F Total Overturning FOS= 26A76 OK xl , . Load Combination#2: M-= 14963 in`Ibs MRST(ROCq+MRST(Wb)° 296879 in'Ibs ..,..... ..._-. ' ..„.-.- Total Overturning FOS= 19337 OK Seismic Rack C Seismic Design Pmpa N. Sheet No: O( Rack C 1403002901 49 52 Supported on Elevated Floor(YIN): No Pmiea Name: Northampton,MA-#2901 Seismic Importance Factor(Iv)= 1.0 <---No Public Access Allowed(Typ.at Back Stockroom/Grocery Storage Areas) - Made By. Date. MAV 04114115 Checked By. Date. IBC 2009/ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Max.Weight per level(2 Pallets/shelf)= 5000 lbs/shelf Weight of Unit= 250#<-Shipping weight per Manuf. Rack Trib width(CL-to-CL of frames)= 96 in .- Total Shelf Load ..�_..�6 ---°�-----°°-°-°---'--"- ha= 0 in 0 lbs ha= 0 in 0 lbs IT,= 0 in 0 Ibs hs= 0 in 0 lbs C - ,- .�.- hs= 0 in 0 lbs - E h,= 0 in 0 lbs hs= 0 in 0 lbs IT,= 60 in 5000 lbs h,= 60 in s000 lbs PLAN V'E"t Total shelf Height,H,= 120 in ' = 44"D ,: .120" Hl Gt°3 -4' 2' LE4JELc�� Unit Height,H„= 120 in Unit Base Depth,D= 44 in Load Case 1 (Load Maus par RMI sea.2 8) Load Case 2'(Load cases per RMI sect 26 e) Seismic(C.)(Ip)= 0.043 W.(Braced) Seismic(C j(IP)= 0.043 W.(Braced) Y 0.011 W,(Down Aisle) 0.011 W,(Doom Aisle) ; CCibAF+O LOAD W,=0.67((0.67)PL]+DL= 4739.0 lbs W,=0.67](1)PL]+DL= 3600.0 lbs E0­ '.-,T(-)F- YSF.'M (k") £� Base Shear,V=C,I^= 203.4 lbs;(Braced) Base Shear,V=C,IpW,= 154.5 lbs(Braced) 50.7 lb.(Down Aisle) 38.5 lbs(Doom Aisle) d Horizontal forces/level,F.=C,V(RMI sea 2.6.6) Horizontal forces/level,F.=CV(RMI­2 6 6) (Service Loads,E=0.7) Fa= 0.0 lbs @ 0 in(CM) (Service Loads) Fa= 0.0 lbs ➢ a 'STANDARD LOAD Note: Fa= 0.0 Its @ 0 in(CM) Fa= 0.0 lbs a (CM)=Product Center of Mass F7= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs ag) 1 � '� R") € ' typically 20 inches above Fa= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs f g the top of shelf at each level. Fs= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs Fa= 0.0 lbs @ 0 in(CM) Fk= 0.0 lbs g F,= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs a 7 F,= 85.0 Ibs @ 140 in(CM) Fz= 105.9 lbs @ 140 in(CM w�°...--i__ :- Ft= 54.7 Ibs @ 90 in(CM) Ft= 0.0 lbs ELE':ATIOtA F.= 2.7 lbs @ 60 in(CM) F.= 2.3 Its @ 60 in(CM) D,= 203.4 lbs(@ Factored Loads) £1,= 154.5 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef,h; Calculate Overturning Moment(Service),MOT=Zf;h; Note: Per ANSI MH16.1:2008(RMI 2008)Section 6.3, MOT= 16986 in-lbs MOT= 14963 in-lbs effective lengths may be determined by rational methods Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST consistent with AISI or AISC.AISC Design by Second-Order MRST= 152900 in-lbs MRST= 115500 in-lbs Analysis,Section C2.2a is used. Notional loads are applied to gravity load cases and K=1.0 is used since the ratio of Factor of Safety Factor of Safety second-order drift to first-order drift P-S/ P-4 <1.1. FOS=9.00 FOS=7.72 'Load cases are per ASCE 7-05 sect.15.5.3.2 [ Reactions(Service Loads): LC#1 LC#2 R.= 71 lbs 54 lbs s R,= 0 Ibs 0 lbs Overtuming FOS= 9.002>=1.5 7.719>=L5 Sliding Restraint,RRST/FOS=689lbs/9.675>=1.5 OK 535lbs 19.892 1.5 OK Reactions(Factored Loads): LC#1 LC#2 ^. y Base Shear(R,)= 102 Ibs 77 lbs ) - Net Uplift(R,.)= 0 lbs 0 Ibs :_ Overtuming+Gravity(P„)= 5468 lbs 3126lbs i Upright Post Type= UA Anchor Design(using"Cracked Concrete"Properties) G , Try:1/2"0 Powers Wedge-Bolt+ScrewAnchor 2 1/2 embed. ! 1 - + }� Embedment= 2.5 in fc= 3500 psi 1 an= 1.875 in<---Eccen.Of Anchor ?"1. :..< 11 fd. hd= 1.65 in 1.5(IT,)=2.5 in ........_ }f Conc.thickness,t= 5 in #of Anchors,n= 1 Sx= 0 in Sy= 0 in Shear Allowables A_= 0.168 In' Steel Strength(0.75)�V„= 3591 lbs<--ACI 318-08 Eq D-20 Tension Allowables Concrete breakout Y dir.(0.75)QV,pp= 1283 lbs<--ACI 318-08 Eq 222 Steel Strength(0.75)ON®= 8190 lbs--ACI 31 B-08 Eq 0-3 Concrete breakout X dir.Single(0.75)mV,sp= 1283 lbs<--ACI 318-08 Eq 222 Concrete Breakout(0.75)ON,w= 591 lbs<--ACI 318-08 Eq 25 Concrete breakout X dr.(all anchors)(0.75)0V,pp= 1283 lbs;<_Act 318-08 Eq 222 Pullout Strength(0.75)mNpp= 779 lbs<--AC1318-08 Eq 0-14 Concrete pryout OVppa= 637 lbs<--ACI 318-08 Eq D-31 Factored Tension Load(N,)= 0 lbs(LC#1) 0 Its(LC#2) LC#1 LC#2 MIN[(pNsa.gNcbg,,pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) Factored Shear Load(Vu): Braced= 102 Its 77 lbs max tension stress ratio(TSR)= 0.000 OK(LC#1) 0.000 OK(LC#2) Down Aisle= 25 lbs 19 lbs Combined shear and tension stress ratio: max shear stress ratio(VSR): Braced= 0160 OK 0.121 OK Braced(TSR+VSR<=1.2)= 0.160-1.2 OK-LC#1 Controls Down Aisle= 0.040 OK 0.030 OK Down Aisle(VSR<=1.0)= 0.040 OK-LC#1 Controls USE: (1)1/2"0 Powers Wedge-Bolt+Screw Anchor 2 1/2"embed.ICC REPORT#ESR-2526 Seismic Rack C Seismic Design 74.'Rack B 1403002901 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) ,H/2 X—X H f 2 MAV 04/14/15 Punching Shear Check: �--- ----- ---� (Design per section 22.5.4 ACI 31808) Max.Factored Vertical Load(P.)= 8131 Ibs ° , ° = Max Vertical Load(ASD)-RMI,sect 2.1-LC#4: Slab Concrete fc= 3500 psi P=(1+0.11Sos)DL+(3/4)((1+0 14Ses)PL+(0,7)EL] a < Slab thickness(t)= 5 in. 4 e _ Sos= 0.239(lp=1) Rack Post X-X= 5 in. 1 a I l OL=(Frame Wt/2)= 125 Ibs Rack Post Y-Y= 3.75 in. I % 0 I ?- PL=F(Shelf Load h,-hs)12= 7600 Ibs ba= 37.50 in. _ - N EL=MOT,I.—I((0.7)(D))= 1152 Ibs 9= 1.33 ; c - - \ P= 6424 Ibs<---At Each Post V°= 36975 Ibs Eq.(22-10) V.max= 29506 Ibs Eq.(22-10) ---Q.1� ° ° Max Vertical Load(LRFD)-RMI,sect 2.2-LC#5: ov'= 17704 lbs by P=(1.2+0.2Sos)DL+(0.85+0.2Sos)PL+EL VAV„= 0.459<1.0 O.K. (Punching Perimeter) P = 8131 Nos<-_At Each Post ?� nEAh1 FIXED Al ONE IND,FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based on Soil bearing area check: Allowable soil bearing= 1500 psf ROTATE AT OTHER-UNIFORMLY Li1S7RIBUTED LOAD Max.Service Vertical Load(P)= 6424 Ibs t a Area reqd.for bearing(A,.0)= 4.28 ft' } �� Tatai EquH.tlnlrpm Lwif - - y r: "b"distance= 24.83 in e Slab thickness(t)= 5.00 in °" ' ' ' . • - S=(1')(t)2/6= 4.17 inz/in j .ma..(.e e ewe) R-a W.(tension allowable)=�,•7.5'1(f.)' ]'S= 1109.26 in-lb/in �`- Factored uniform bearing,wu-Pu/A_,= 13.18 Ib/in/in Mu=w1213=(w,JI(b-min(X-X,Y-Y))/2)2]13= 488.38 in-lblin-Deft.End Mt=245 in-lblin r t..TT -':•z;r« r ll y�_�._ M,/+Mnc= 0.440<1.0 O.K. T �..., t a:..w " -*--. y zaEl•� Rack FOS Overturning with Resistance from Effective Weight of Slab on Grade: s `\ Width of Single Rack= 44 in Slab thickness(t)= 5.0 in f Modulus of Rupture,f,=7.5•SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)z 16= 50.0 ins/ft fI Allowable Concrete Slab Bending Moment,Ma/FS=S•f,/1.5= 1232.5 ft•lbs/fl Effective Cantilever Span Length(Ij at Mw,= 6.3 k ff( t ILE �I Total Length of Slab(h+Width of Single Rack)= 9.9 ft A�'� _ t- Trib.Width of Slab=Trib width of Rack= 8.0 It L/ Weight of Concrete Slab at Rack(P_,)= 4973.4 Ibs S Resisting Moment-Concrete Slab at Rack,MRST(wb)=P_-h/2= 296819 in•Ibs Load Combination#1: M-= 23763 in'Ibs MRST(I-k)+MRSTtwe1= 526367 in`lbs l l f t Total Overturning FOS= 22.151 OK Load Combination 92: M_= 14963 in'lbs MesTiaxq+ MasT(we)= 296819 in`Ib5 Total Overturning FOS= 19.837 OK Seismic Rack B Pmjact No. 6heat No: Of Seismic Design Rack B 1403002901 47 52 Supported on Elevated Floor(Y/N): No Pmjecl Name'. Northampton,MA-#2901 Seismic Importance Factor(lv)= 1.0 <---No Public Access Allowed(Typ.at Back Stockroom/Grocery Storage Areas) Mad.By Dam'. MAV 04/14115 Checked By DaOS'. IBC 2009/ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Max.Weight per level(2 Pallets)shelf)= 50DO Ibs/shelf Weight of Unit= 250#<--Shipping weight per Manuf. Rack Trib width(CL-to-CL of frames)= 96 in Total Shelf Load ha= 0 in 0 Ibs hs= 0 in D Ibs hr= 0 in 0 Ibs hs= 0 in 0 Ibs hs= in lbs --r}%+--- --r h,= 36 6 in 5000 0 Ibs 11 hs= 36 in 3400 Ibs :....... _.. ,,e hi= 36 in 3400 Ibs _ � h,= 12 in 3400 Ibs 3 a- f,..-••'r Total Shelf Height,H,= 120 in Unit Height,Ha= 120 in Fiafk Vl€-'vy �; Unit Base Depth,D= 44 in W 44-tr_e IZV' Tfi'11Ct't 6 4 LtdELS Load Case V(Load o Per RMI sect.2.6.8) Load Case 2'(Load cases par RMI sect 2 6.8) TT_ T k ------7-----..--- -- Seismic(Cs)(Ip)= 0.043 W,(Braced) Seismic(Cj(IR)= 0.043 Ws(Braced) 0.011 W,(Down Aisle) 0.011 W,(Down Aisle) F W,=0.67[(0.67)PL]+DL= 7073.3 Ibs W,=0.67[(1)PL)+DL= 3600.0 Ibs _.--- Base Shear,V=C.1,W,= 3016 Ibs(Braced) Base Shear,V=C,I"W,= 154.5 Ibs(Braced) ?6• 4 75.7 Ibs(Down Aisle) 38.5 Ibs(Down Aisle) 1 •._.n d ! i Horizontal forces/level,F.=C„,V(RMI sect 2.6 6) Horizontal forces/level,F,=C„V(RMI aeaz s 6) y6_ (Service Loads,E=0.7) Fa= 0.0 Ibs @ 0 in(CM) (Service Loads) Fa= 0.0 Ibs Note: Fs= 0.0 Ibs @ 0 in(CM) Fa= 0.0 Ibs g (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) Fr= 0.0 Ibs typically 20 inches above Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs the top of shelf at each level. Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs F,= 108.1 Ibs @ 144 in(CM) Fe= 105.9 Ibs @ 140 in(CM I F,= 52.1 Ibs @ 102 in(CM) F,= 0.0 Ibs F,= 331 Ibs @ 66 in(CM) F,= 0.0 Ibs F,= 15.3 Ibs @ 30 in(CM) F,= 0.0 Ibs F„= 3.4 Ibs @ 60 in(CM) F„= 2.3 Ibs @ 60 in(CM) D, 303.6 Ibs(@ Factored Loads) Eh= 154.5 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h, Calculate Overturning Moment(Service),MOT=If;h; Note: Per ANSI MH16.1:2008(RMI 2008)Section 6.3, MOT= 23763 in-Ibs MOT= 14963 in-Ibs effective lengths may be determined by rational methods Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRs7 consistent with AISI or AISC.AISC Design by Second-Order MRsr= 229548 in-Ibs MRsr= 115500 in-Ibs Analysis,Section C2.2a is used. Notional loads are applied to gravity bad cases and K=1.0 is used since the ratio of Factor of Safety Factor of Safety second-order drift to first-order drift(P-6)/(P-A) 1.1. FOS=9.66 FOS=7.72 'Load cases are per ASCE 7-05 sect.15.5.3.2 " Reactions(Service Loads): LC#1 LC#2 R,= 106 Ibs 54 Ibs R,= 0 Ibs 0 Ibs Overturning FOS= 9.660>=1.5 7.719>=1.5 r + - °- fi Sliding Restraint,RRSr/FOS=1019lbs/9.59>=1.5 OK 535lbs 19.892>=1.5 OK _ ._.. -t. Reactions(Factored Loads): LC#1 LC#2 F• t Base Shear(R,)= 152 Ibs 77 lbs �!-) Net Uplift(Ry)= 0 Ibs 0 Ibs -�K-- _`� Overturning Gravity(P")= 8131 Ibs 3126 Ibs Upright Post Type= UA '---- 3.ae _ 7 Anchor Design(using"Cracked Concrete"Properties) Try:112"0 Powers Wedge-Bolt+Screw Anchor 2 1/2 embed. `> t " - •' Embedment= 2.5 in _...... - "...... - .#?•.; ,< .. _. . f�= 3500 psi I ' e,;= 1.875 in<---Eccen.Of Anchor r7: .rl l ,-< I f; h„= 1.65 in 1.5(h„)=2.5 in ytt__...._... yyr .............. ...__..._. .. .. ..� ___,_......._....�yr _.....,fl_ Conc.thickness,t= 5 in -I 7 #of Anchors,n= 1 ; _- Sx= 0 in Sy= 0 in Shear Allowables A„= 0.168 in' Steel Strength(0.75)iliV„= 3591 Ibs<-ACI 318-08 Eq D-20 Tension Allowables Concrete breakout Y dir.(0.75)0V,N= 1283 Ibs<--ACI 318-08 Eq 0-22 Steel Strength(0.75)ON„= 8190 Ibs<--ACI 318-08 Eq D-3 Concrete breakout X dir.Single(0.75)mV,,= 1283 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)0N,,,,= 591 Ibs<_-ACI 318-08 Eq D-5 Concrete breakout X dir.(all anchors)(0.75)¢V,�= 1283 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)+Npa= 779 Ibs<-Act 318-08 Eq D-14 Concrete pryout�V_= 637 Ibs<-_ACI 318-08 Eq D-31 Factored Tension Load(Na)= 0 Ibs(LC#1) 0 Ibs(LC#2) LC#1 LC#2 MIN[,pNsa,cpNcbg,rpNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) Factored Shear Load(Va): Braced= 152 Ibs 77 Ibs max tension stress ratio(TSR)= 0.000 OK(LC#1) 0.000 OK(LC#2) Down Aisle= 38 Ibs 19 Ibs Combined shear and tension stress ratio: max shear stress ratio(VSR): Braced= 0.238 OK 0.121 OK Braced(TSR+VSR<=1.2)= 0.238<=1.2 OK-LC#1 Controls Down Aisle= 0.059 OK 0.030 OK Down Aisle(VSR<=1.0)= 0.059 OK-LC#1 Controls USE: (1)1/2"0 Powers Wedge-Bolt+Screw Anchor 21/2"embed. ICC REPORT#ESR-2526 Seismic Rack B PrgM No. 1-No' d' Racking Anchorage Design 1403002901 46 52 P""Na_ Northam ton,MA-#2901 Store Latitude/Longitude Coordinates(per Google Earth): m ay N 42'20'29" 42.341389 MAV 04/14/15 W 72°38'38" 72.643889 c- By o, IBC 2009 /ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Braced Down Aisle Response Modification Factor,R= 4.0 6.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,00= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Ce= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= II IBC,Table 1604.5 Importance Factor,IP= 1.5 ASCE-7 Sect.15.5.3 0.2 Second Period Accel.,S,= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 F.= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F�= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 Sms= 0.358 IBC eq.16-36,ASCE-7 eq.11.4-1 SmI= 0.158 IBC eq.16-37,ASCE-7 eq.11.4-2 Sos= 0.239 IBC eq.16-38,ASCE-7 eq.11.4-3 SDI= 0.106 IBC eq.16-39,ASCE-7 eq.11.4-4 Seismic Design Category --based on SDS= B IBC Table 1613.5.6(1),ASCE-7 Table 11.6-1 --based on SD,= B IBC Table 1613.5.6(2),ASCE-7 Table 11.6-2 Braced Down Aisle Period,T(H111k 5 96")= 0.259 1.262 sec.-RMI sect.2.6.3 Period,T(96"<H-0= 0.615 1.645 sec.-RMI sect.2.6.3 C.(H„a 5 96")= 0.060 0.014 ->min(SDS/R,SD1/((T)(R))) C,(96"<H,ack)= 0.043 0.011 -->min[SDS/R,SD1/((T)(R))j C„min= 0.011 0.011 ->RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear: Braced Down Aisle V(Hrack s 96")=C,IPWa= 0.090 0.021 Wa RMI sect.2.6.2 V(96"<Hrack)=C,IpWs= 0.064 0.016 W, RMI sect.2.6.2 LC#1: II ADL+12PL LC#2: 1.2 DL+1 APL LC#6a:(0.9-0.2SDS)DL+(0.9-0.2SDs)PLaw+(1.0)EL <--EL and PL,=(0.67)PL at each shelf level 0.8522 DL 0.8522 PL, 1.0000 EL LC#6b:(0.9-0.2SDs)DL+(0.9-0.2SDS)PL,PP+(1.0)EL <--EL and PL,PP=(1.0)PL at top shelf only 0.8522 DL 0.8522 PL,PP 1.0000 EL LC#5:(1.2+0.2SDS)DL+(0.85+0.2SDS)PL+(1.0)EL 1.2478 DL 0.8978 PL 1.0000 EL PrgM No SNM N. 1, Storage Rack Anchorage Design 1403002901 45 52 Prq•c!Narre: Northam ton,MA-#2901 Store Latitude/Longitude Coordinates(per Google Earth): ra By on. N 42.20'29" 42.341389 MAV 04/14/15 W 72°38'38" 72.643889 cn.r By �• IBC 2009 /ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Braced Down Aisle Response Modification Factor,R= 4.0 6.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,IIp= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Cd= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= II IBC,Table 1604.5 Importance Factor,IP= 1.0 ASCE-7 Sect.15.5.3 0.2 Second Period Accel.,S.= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 F.= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F,= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 smS= 0.358 g IBC eq.16-36,ASCE-7 eq.11.4-1 SM,= 0.158 g IBC eq.16-37,ASCE-7 eq.11.4-2 Sos= 0.239 g IBC eq.16-38,ASCE-7 eq.11.4-3 SDI= 0.106 g IBC eq.1639,ASCE-7 eq.11AA Seismic Design Category --based on SDS= B IBC Table 1613.5.6(1),ASCE-7 Table 11.61 --based on SD,= B IBC Table 1613.5.6(2),ASCE-7 Table 11.62 Braced Dom Aisle Period,T(H_,5 96")= 0.259 1.262 sec.-RMI sect.2.6.3 Period,T(96"<Hrack)= 0.615 1.645 sec.-RMI sect.2.6.3 C.(H..k 5 96")= 0.060 0.014 -->min[SDS/R,SD1/((T)(R))] Cs(96"<H-0= 0.043 0.011 ->min[SDS/R,SDt/((T)(R))] C•,min= 0.011 0.011 -->RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear: Braced Dom Aisle V(H,a.k 5 96")=C.lpWa= 0.060 0.014 Ws RMI sect.2.6.2 V(96"<H-0=C,IpWs= 0.043 0.011 Ws RMI sect.2.6.2 Load Combinations for LRFD Member Design(2008-RMI,Section 2.1): DL=Dead Load for RISA Frame analysis PL=Ma)dmum load from pallets or products stored on racks LC#1:1 ADL+1.2PL EL=Seismic Load-RMI section 2.6.6-Vert.Distribution LC#2:1.2DL+1 APL LC Na:(0.9-0.2SD5)DL+(0.9-0.2SD5)PLapp+(1.0)EL <---EL and PL,=(0.67)PL at each shelf level 0.8522 DL 0.8522 PLapp 1.0000 EL LC#6b:(0.9-0.2SD5)DL+(0.9-0.2Scs)PLapp+(1.0)EL <---EL and PL,=(1.0)PL at top shelf only 0.8522 DL 0.8522 PLapp 1.0000 EL LC#5:(1.2+0.2SDS)DL+(0.85+0.2SDs)PL+(1.0)EL 1.2478 DL 0.8978 PL 1.0000 EL 78"Tall"8"5 Level 1403DO2901 44 IX 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04!14/15 Punching Shear Check: H/2 X—X 'H/21. (Design per section 22 5A ACI 318-08) Max.Factored Vertical Load(Pu)= 1079 Ibs Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in Rack Post X-X= 2 in. ° Rack Post Y-Y= 2 in. I e I I b°= 24.00 in D= 1.00 V�= 22718 Ibs Eq.(22-10) ; \ V„max 15107lbs Eq.(22-10) ° ----4.I = 0V„= 9064 Ibs �bp --- °. VAV„= 0.119<1.0OX- (Punching Perimeter) Slab tension based on Soil bearing area check: ?r- REAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY etil NOT Allowable soil bearing= 1500 psf ROTATE AT OTr1[R--4NIFokhrLY DICTRISUTEO LOAD Max.Vertical Load(Service)(P)= 754 Ibs EQ uoaonn Lose e Area regd.for bearing(A.)= 0.50 fe ';s yr "b"distance= 8.51 in �R vM1 Slab thickness(t)= 4.00 in • 6 M,,,,,f„„f„I,,ie` Ws_ S=(1")(t)'/6= 2.67 in3/in { , \ J (tension allowable)=md7.5)((f'j`j(S)= 710 in-lb/in T- OM, i+ �' �"°•^�°'•+'^^� .,_^:�:.. 6 Factored uniform bearing,w„=Pu/A„,= 14.92 lb/in/in M.=w L2/3=(wu)[(1b-(2"))/2)2)/3= 52.62 in-lb/in-Defl.End M7=27 in-lb/in ~ L ';T _,..,,. (s e.n.,,,e­a) _ _ +• r z ti MAMRI= U74<1.0 O.K. "U zsei" Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 18 in Slab thickness(t)= 4.0 in - Modulus of Rupture,f,=7.5'SDRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)'/6= 32.0 in3/ft Allowable Concrete Slab Bending Moment,Mw=S'f,= 1183.2 ft'Ibs/ft - F -- -% Effective Cantilever Span Length(L,)at My,= 6.9 ft ["" 'I Total Length of Slab(I,+Wdth of Single Rack)= 8.4 R I � Trib.Width of Slab=Trib vndth of Rack= 4.0 ft •••--- f Weight of Concrete Slab at Rack(P,,,,,)= 1676 Ibs Resisting Moment-Concrete Slab at Rack,MRST(.Iii=P,,,,, L,12- 84261 in'Ibs Ji Load Combination#1: M �- oT- 2901 in'Ibs --- MRST(F-k)+ MRST(—)- 94206 in'Ibs Total Overtumino FOS= 32.469 OK w Load Combination#2: MOT= 1472 in'Ibs ”-" •- ,--- t., ZE M.,(—)+MRST(—)= 87861 in'Ibs ) "-"--�X ""- Total Overtumino FOS= 59.690 OK `_ 30-8 P�R� 78"Tall"8"5 Level 1403002901 a3 52 R.m. Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN)'. No MAV 04/14/15 Total Load per shelf= 150 Ibs<---assumes(2)shelves per level w By #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 30.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Tdb width)= 4 It(Frames are assumed to be 4'-0'oc) Shelf depth(ea.side)= 15 in Total Shelf Load/Level/Frame Ins= 0 in he= 0 in h,= Din hs= 0 in hs= 18 in 300 Ibs - - - h4= 18 in 300 Ibs - ' hs= 18 in 300 Ibs h,= 18 in 300 Ibs h,= 6 in 300 Ibs S, ._........ _ Total Shelf Height,H,= 78 in Unit Height,H„= 78 in s Unit Base Depth,D= 18 in Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(I,)= 0.090 W, ..., _.. ........... Total Wt,W._(0.67)[0.67PLI+DL= 77135 Ibs Total Wt,W._(0.67)[(1)PLI+D1-= 301 Ibs Base Shear,V=Cj^= 69.3 Ibs Base Shear,V=C,l^= 27.0 Ibs Horizontal forces per level,F,=C,,,V(RMI sect 266) Horizontal forces per level,F,=C„V(RMI sect 26.6) (Service Loads,E=0.7) FS= 0.0 Ibs @ 0 in(CM) (Service Loads) Fe= 0.0 Ibs Note: Fe= 0.0 Ibs @ 0 in(CM) Fe= 0.0 Ibs f (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs - --�.... � typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) F,,= 0.0 Ibs the top of shelf at each level. Fs= 153 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) F4= 12.3 Ibs @ 66 in(CM) F4= 0.0 Ibs F,,= 9.0 Ibs @ 48 in(CM) F,= 0.0 Ibs F,= 5.6 Ibs @ 30 in(CM) F,= 0.0 Ibs F,= 2.2 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.6 Ibs @ 39 in(CM) F„= 2.5 Ibs @ 39in(CM) If,= 69.3 Ibs(@ Factored Loads) If;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),Mot=If,h, Check Single Frame/Bay Overturning Stability: MOT= 2901 in-Ibs MOT= 1472 in-Ibs MOT(LC#1)= 2901 in-Ibs MRST(LC#1)= 9945 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 3.428>=1.5-No AS Reqd MRST= 9945 in-Ibs MRST= 3600 in-Ibs MOT(LC#2)= 1472 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 3600 in-Ibs FOS=3.43 FOS=2.45 FOS=MRST/MOT= 2.446-1.5-No AB Reqd ->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.12 Reactions(Service Loads): LC#1 LC#2 F R,= 24 Ibs 9 Ibs DLA�A:.E r'2 u-A , Rr= 0lbs(No Uplift) 0lbs(No Uplift) � AS RAA'r'v}y HO R @aT EACH v FRAME-WO a Overturning FOS= 3.428> 1.5 2.446> 1.5 lAI A4 3y EiO A KiA S ES Sliding Restraint force,RRST/FOS=13711bs 15.648>=1.5 OK 5811bs 16.152-1.5 OK Reactions(Factored Loads): LC#1 LC#2 £2.A4G GA ea TS £R Base Shear(Rj= 35 Ibs 13 Ibs =RAU6s Net Uplift(Rr)= 0 lbs 0 lbs - '- A Overturning+Gravity(P„)= 10791bs 371 Ibs x , Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed -- ' Embedment= 2.125 in , f'p= 3500 psi .- a.= 0 in<-_Eccen.Of Anchor h,t= 1.425 in 1.5(hd)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)mV®= 3303 Ibs<--ACI 318-08 Eq D-20 Steel Strength(0.75),l,N„= 10043 Ibs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�Vpsp= 1001 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)�Npb.= 1517 Ibs<--ACI 318-D8 Eq D-5 Concrete breakout X dir.Single(0.754Vbp= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)¢Npp= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vp,,= 1597 Ibs-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OVppp= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V„)= 35 Ibs 13 Ibs MIN[tpNsa,cpNcbg,ryNpn)I Nu= 99.99>2.5-OK-IBC I CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30-8 84"Tall"3"9 Level 1403002901 42IX 52 P�wm. Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 6, o„ Punching Shear Check: H/2 X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(Pu)= 1290 Ibs ' ° i n1 Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. I °, I Rack Post Y-Y= 2 in. 1 a bo= 24.00 in. j 1 D= 1.00 N V4= 22718 Ibs Eq.(22-10) L V,max= 151071bs Eq.(22-10) --- ---°---4'' 0V„= 9064 lbs �bp Woy.= 0.142<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I 7C- REAM rIXED Al ONE Ell",FREE TO DEF'LECI VERTICALLY-111 NOT Allowable soil bearing= 1500 psf RCT+ATE AT OTNER_.,uNIFORMLY DISTRIBuTED LOAD i Max.Vertical Load(Service)(P)- 896 Ibs Area reqd.for bearing(A„,)= 0.60 it' "b"distance= 9.20 in Slab thickness(t)= 4.00 in S=(1")at)°/6= 2.67 in3/in 4M,4(tension allowable)=p,(7.5)((f',)' j(S)- 710 in-lb/in se.,`y..ti Factored uniform bearing,w,=P,/A„,= 14.99 lb/in/in " I- ^r, ,r,-s,,, Mu=w„L�/3=(wu)((b-(2"))/2)2j 13= 66.12 in-lb/in-Defl.End M7=34 in-lb/in 24f t My/Mat= 0.093<1.0 O.K. ,,..� `.�Mr... , Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 18 in Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SCRT(fc)= 443.7 psi (, --.� ,.✓ Concrete Slab Section Modulus,S=b(t)2/6- 32.0 in3/R I j Allowable Concrete Slab Bending Moment,M,i,=S'f,= 1183.2 ft'Ibslfl Effective Cantilever Span Length(L,)at MW= 6.9 ft Total Length of Slab(Ic+Width of Single Rack)= 8.4 ft Tnb.Width of Slab=Trib width of Rack= 4.0 R � I f=_ Weight of Concrete Slab at Rack(P_)= 1676 Ibs Resisting Moment-Concrete Slab at Rack,MRST(—)=P. L,/2= 84261 in'Ibs �,. ! F7 1 1 Load Combination#1: M , ) a oT= 3539 in'Ibs � --- MRST(R )+ MRST(—)= 960151n'Ibs Total Overturning FOS= 27.132 OK Load Combination#2: Mor= 1188 in'Ibs jl s MRST(—)+MRST(—)= 86961 in'Ibs - -- Total Overturning FOS= 73.224 OK 30-3 vmjM w Snow No. 84"Tall"3"9 Level 1403002901 at 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No wrn sr MAV 04/14/15 Total Load per shelf= 100 Ibs<---assumes(2)shelves per level er #of Levels= 9 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 2000. psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Tnb width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 15 in Total Shelf Load/Level/Frame hs= 9.5 in 200 Ibs ha= 10 in 200 Ibs hT= 9.5 in 200 Ibs hs= 10 in 200 Ibs hs= 9.5 in 200 Ibs fe h4= 10 in 200 Ibs - -' -'" `- .t` "'J h,= 9.5 in 200 Ibs I it h,= 10 in 200 Ibs h,= 6 in 200 Ibs Total Shelf Height,HI= 84 in Unit Height,H.= 84 in Unit Base Depth,D= 18 in I Load Case V(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases Per RMI sect.2.6.8(2)) i Seismic(Ce)(Ip)= 0.090 W, Seismic(C j(lp)= 0.090 W, Total Wt,W,=(0.67)[067PL]+DL= 908.02 Ibs Total Wt,W,=(0.67)I(i)PL)+DL- 234 Ibs Base Shear,V=C,I^= 81.4 Ibs Base Shear,V=C,I^= 21.0 Ibs - 1 'n..__ Horizontal forces per level,F.=CyV(RMI sect 26.6) Horizontal forces per level,F.=C„,V(RMI sect2.6.6) [ 3 i _._...,. .. ._...... - }......_. (Service Loads,E=03) Fe- 10.4 Ibs @ 90 in(CM) (Service Loads) F9= 11.9 Ibs @ 90in(CM) Note: Fs= 9.3 Ibs @ 80.5 in(CM) Fs= 0.0 Ibs I _. C # ....._ ...... (CM)=Product Center of Mass Fr= 8.2 Ibs @ 70.5 in(CM) Fr= 0.0 Ibs typically 6lnches above Fs= 7.1 Ibs @ 61 in(CM) FS= 0.0 Ibs P` ' •"•' the top of shelf at each level. Fs= 5.9 Ibs @ 51 in(CM) Fs= 0.0 Ibs F,= 4.8 Ibs @ 41.5 in(CM) F,= 0.0 Ibs F,= 3.7 Ibs @ 31.5 in(CM) F,= 0.0 Ibs F,= 2.5 Ibs @ 22 in(CM) Fz= 0.0 Ibs F,= 1.4 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.6 Ibs @ 42 in(CM) F„= 2.8 Ibs @ 42in(CM) Ef;= 81.4 Ibs(@ Factored Loads) if,= 21.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef;h; Calculate Overturning Moment(Service),MOT=%f;h; Check Single Frame f Bay Overturning Stability: MOT= 3539 in-Ibs MOT= 1188 in-Ibs MOT(LC#1)= 3539 in-Ibs MRST(LM)= 11754 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 3.321>=1.5-No AB Reqd MRST= 11754 in-Ibs MRST= 2700 in-Ibs MOT(LC#2)= 1188 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 2700 in-Ibs FOS=3.32 FOS=2.27 FOS=MRST/MOT= 2.273>=1.5-No AB Reqd ->No Anchorage Recid-No Net Uplift at LC#t and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 28 Ibs 7 Ibs '1GHT TWJG=STEEL A CHwR STRAP tl-.a 22C, 1 Rr= 0 Ibs(No Uplift) 0 Ibs(No Uplift) ?sts E STRAP A!1 Ft3RS AT Overturning FOS= 1321>=1.5 2.273>=1.5 3 EACH END FRAME Al 08.0`- } t ^MRx)AT 14TERiOR PRAME5, Sliding Restraint force,RRST/FOS=16311bs 15.712>=1.5 OK 46lbs/6134>=1.5 OK - Tra Reactions(Factored Loads): LC#1 LC#2 ANCHOq Base Shear(Rj= 41 Ibs 10lbs _t.. ,_ .----1-- g;••R,c p, rt Ea,pR rRAVE$ Net Uplift(Rr)= 0 Ibs 0 Ibs Overturning+Gravity(P,)= 1290 Ibs 293 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"O Powers Wedge-Bolt+Screw Anchor 2 l/8"embed Embedment= 2.125 in 1 f'.= 3500 psi . ! ............�. �... e,;= 0 in<--Eccen.Of Anchor h,l= 1.425 in 1.5(hd)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75AV,p= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75)ilN,e= 10043 Ibs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�V,sp= 1001 Ibs<--ACI 318-08 Eq D-22 Conaete Breakout(0.75)+N,sp= 1517 Ibs<-ACI 318-08 Eq 0-5 Concrete breakout X dir.Single(0.75)+Vcbg= 703 Ibs<-ACI 318-08 Eq 0-22 Pullout Strength(0.75)mNm= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)+V,bg= 1597 Ibs<_ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)mV,pp= 1634 Ibs o-ACI 318-08 Eq D-31 Factored Tension Load(Np)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V")= 41 Ibs 10 Ibs MIN[cpNsa,(pNcbg,(pNpn]I Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30-3 P'�^b SrvM No 54"Tall"2"5 Level 1403002901 40 a 52 Northampton,MA-#2901 —Sr o.4 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14n5 1 Punching Shear Check: LH/2 L, X—X H (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 982 lbs CN Slab Concrete Vc= 3500 psi = Slab thickness(t)= 4 in. - a ° Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. e° I b.= % >- 24.00 in. I , I 1.00 1 V.= 22718 lbs Eq.(22-10) i "� V,max 15107 lbs Eq.(22-10) ---4'' _ QV„= 9064 lbs Nbp — a V (Punching Perimeter) ,/�V„= 0.108<1.0 O.K. Slab tension based on Soil bearing area check: I ?(.- HEAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf NOTATE AT OTH[-R--UNIFORIALY DISi RI aT/TED LOAD Max.Vertical Load(Service)(P)= 719 lbs e Area regd.for bearing(A,)= 0.48 fl "b"distance= 8.31 in c �R v. ..r Slab thickness(t) 4.00 in - - `• S=(1••)(tt)z/6= 2.67 in'/in ,lM,�(tension allowable)=4,(Z5)1(f'J) ](S)= 710 in-lb/in - s <"� m, (•'e.ns.a.�a� .,_R Factored uniform bearing,w„=Pu/A,.0= 14.22 lb/in/in M.=w.L/3=(w.)[(b-(2"))12)2]/3= 47.17 in-lb/in-Defl.End Mt=24 in-lbfin MAW,= 0.066<1.0 O.K. �M'.u. . . . z+¢i zaeiRf Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 18 in -. Slab thickness(t)= 4.0 in i..• ?._.: Modulus of Rupture,f,=7.5'SaRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)'16= 32.0 ins /R Allowable Concrete Slab Bending Moment,My.=S'f,- 1183.2 ft'Ibslfl Effective Cantilever Span Length(L,)at Mwl= 6.9 It Total Length of Slab(h+Width of Single Rack)= 8.4 fl Trib.Width of Slab=Tdb width of Rack= 4.0 fl Weight of Concrete Slab at Rack(P_)= 1676 lbs r. _I m 4 Resisting Moment-Concrete Slab at Rack,MRSTIrm)=P_ Ld2= 84261 in'Ibs j Load Combination#1: Mon.= 2077 in'Ibs MRST(I-k)+ MRST(.ae)= 94206 in'Ibs Total Overtuming FOS= 45,358 OK At _ Load Combination#2: M- �.-- oT- 1051 in'Ibs '"""` �^• ^/ ' MRST(F—)+ M (.,.$)= 87861 in'Ibs RS -} - Total Overtuming FOS= 83.561 OK 30-2 54"Tali"2"5 Level 1403002901 39 52 P,.i�R.m. Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN). No R.n.N °e1 MAV 04/14115 Total Load per shelf= 150 Ibs<---assumes(2)shelves per level #of Levels= 5 LEVEL IBC 2009/ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 30.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 15 in Total Shelf Load/Level/Frame hs= 0 in ha= 0 in h,= 0 in h,,= 0 in hs= 12 in 300 Ibs - h4= 12 in 300 Ibs h3= 12 in 300 Ibs , h,= 12 in 300 Ibs i h,= 6 in 300 Ibs ---- Total Shelf Height,H,= 54 in Unit Height,H.= 54 in Unit Base Depth,D= 18 in yti Load Case V(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismc(C,)(Ip)= 0.090 W, Seisrnic(C.)(Q° 0.090 W. ,:,,:,,.:::•. 3k.....,.,.-...::.._ Total Wt,W,_(0.67)[0.67PLI+DL= 77335 Ibs Total Wt,W._(0.67)1(1)PLI+DL= 301 Ibs Base Shear,V=Cj^= 693 Ibs Base Shear,V=C j^= 27.0 Ibs Horizontal forces per level,F.=C„V(RMI wa 2.6 6) Horizontal forces per level,F,=C,,,V(RMI sa=x 2 6s) (Service Loads,E=0.7) F,= 0.0 Ibs @ 0 in(CM) (Service Loads) FS= 0.0 Ibs Note: Fa= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs j (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs --, typically inches above Fs= 0.0 Ibs @ 0 in(CM) FS= 0.0 Ibs ` the top of shelf at each level. Fs= 15.0 Ibs @ 60 in(CM) Fs= 16.4 Ibs @ 60in(CM) F4= 12.0 Ibs @ 48 in(CM) F4= 0.0 Ibs F3= 9.0 Ibs @ 36 in(CM) F3= 0.0 Ibs F,= 6.0 Ibs @ 24 in(CM) F,= 0.0 Ibs F,= 3.0 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.4 Ibs @ 27 in(CM) F„= 2.5 Ibs @ 27in(CM) if,= 69.3 Ibs(@ Factored Loads) If= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Efh; Calculate Overturning Moment(Service),MOT=Efh; Check Single Frame f Bay Overturning Stability: MOT= 2077 in-Ibs MOT= 1051 in-Ibs MOT(LC#1)= 2077 in-Ibs MRST(LC#1)= 9945 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 4.788>=1.5-No AB Reqd MRST= 9945 in-Ibs MRST 3600 in-Ibs MOT(LC#2)= 1051 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 3600 in-Ibs FOS=4.79 FOS=3.42 FOS=MRST/MOT= 3.424>=1.5-No AB Reqd -->No Anchorage Recid-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R.= 24 Ibs 9 Ibs ..:LIG T r� s7EEL A iCN."R STRAa 22 a."I R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) pLq E ST Ras A.14 1+3RS AT FACH EN FRAYS-ND 13 4'x Overturning FOS= 4.788>=1.5 3.424>=1.5 .M&X)A. NTEMOR CRAMES. Sliding Restraint force,RRST/FOS=126lbs 15,175>=1.5 OK 52lbs/5.533>=1.5 OK rr1. -0- Reactions(Factored Loads): LC#1 LC#2 �^ ' r2:Afi4CHOq F.D1TS PER Base Shear(Rj= 35 Ibs 13 Ibs I •y ,-- -- srRAa AF tNT£R:pR ERAf*`. s Net Uplift(Ry)= 0 Ibs 0 Ibs Overturning+Gravity(P„)= 982 lbs 322 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"O Pourers Wedge-Bolt+Screw Anchor 2 1/8"embed. `"- Embedment= 2.125 in f',= 3500 psi . '" / _....../ _... C.... e,;= 0 in<__Eccen.Of Anchor h„= 1.425 in 1.5(hy)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs<--ACI 31 B-08 Eq D-20 Steel Strength(0.75)ON,.= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�V.sp= 1001 Ibs<_ACI 318-08 Eq D-22 Concrete Breakout(0.75)0 N4sp= 1517 Ibs<_-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V,= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)ON,= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vpbg= 1597 Ibs<_ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OVpps= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vp)= 35 Ibs 13 Ibs MIN[WNsa,(pNcbg,rpNpnl/Nu= 99.99>2.5-OK-IBC/CBC,sea 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30-2 mow 90"Tall"X"9 Level 1403002901 38 52 Northampton,MA-#2901 IBC 2009 if ASCE 7-051 2008 RMI(ANSI/MH16.1-08) MAV D4114115 H/2 X—X H/2 K e, Punching Shear Check: (Design per section 22.5.4 ACI 318-08) r--- --.o-- ——- Max.Factored Vertical Load(P„)= 1114 Ibs °a Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. 1 I I Rack Post Y-Y= 2 in. b,= 24,00 in. I P° 100 ° N V^= 22718 Ibs Eq.(22-10) 1 o m = V„Max= 15107 Ibs Eq.(22-10) � �V 9064 lbs b0 --- < VAV"= 0.123<1.0 O.K. (Punching Perimeter) REAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based on Soil bearing area check: ROTATE AT OTHER—UNIFORMLY DISSRISUTEO LOAD Allowable soil bearing= 1500 psi Max.Vertical Load(Service)(P)= 835 Ibs Area re d.for bearing A 0.56 ft' q 9( tea)_ � "---•->T-,�..,. a« R'"v _ srt "b"distance= 8.95 in Slab thickness(t)= 4.00 in3 S=(1")(t)z/6= 2.67 in(n ®MM(tension altowabte)=m,(7.5%f',) J(S)- 710 in-ibin { s°��`L-�-!`° - '""Mfi•- a, . Factored uniform bearing,w„=P„/7�.a= 13.90 Ib/iNin - - ' s r'"s"" M.=w„L'/3=(w,)l(b-(2"))/2)z)13= 55.97 in-lb/in-Defl.End Mt=28 in-Ibin "' '.=- „-„� y =tea•• {•i e.n.oe.a a�re� NO MAM.= 0.079<1.0 O.K. - a' Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 33 in a - Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SDRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)16= 32.0 in3lft Allowable Concrete Slab Bending Moment,Mwj=S'f,- 1183.2 ft'Ibs/}t - { --" (r:;z Effective Cantilever Span Length(L")at Mai= 6.9 it Total Length of Slab(4+Width of Single Rack)= 9.6 ft - I ) LJ Trib.Width of Slab=Trib width of Rack= 4.0 ft I - ". . Weight of Concrete Slab at Rack(P_)= 1926 Ibs t }' 1� Resisting Moment-Concrete Slab at Rack,MRSTImq=P_"L,/2= 111275 in'lbs a Load Combination#1: MOT= 3767 in'Ibs - MRST(�)+MRST(mb)= 132824 In"Ibs Total Overturning FOS= 35.257 OK Load Combination#2: MOT= 1267 in'Ibs MRST(�)+MRSTi—)= 116225 in`lbs Total Overtuming FOS= 91.745 OK 48X 90"Tall"X"9 Level 1403002901 37 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y)N): No .-N MAV 04/14/15 Total Load per shelf= 100 lbs<---assumes(2)shelves per level #of Levels= 9 LEVEL IBC 2009/ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 12.50 psflshelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 24 in Total Shelf Load I Level I Frame h,= 10.5 in 200 lbs h.= 10.5 in 200 lbs hT= 10.5 in 200 lbs hs= 10.5 in 200 lbs h = 10.5 in 200Ibs ha= 10.5 in 200 lbs ,{ ..._ 77... .1 _..ge.. h3= 10.5 in 200 lbs ? i h,= 10.5 in 200 lbs '}r--- h,= 6 in 200 lbs a Total Shelf Height,H,= 90 in Unit Height,H"= 90 in I k Unit Base Depth,D= 33 in Load Case 2'(Load cases per RMI sect.2.6.8(2)) ` Load Case 1'(Load cases Per RMI sect.2.6.8(1)) Seismic(C,)(Ip)= 0.090 W, Seismic(Cj(Ip)= 0.090 W, 'q Total Wt,W,=(0.67)[0.67PL]+DL= 908.02 lbs Total Wt,W.=(0.67)[(1)PL]+D1_= 234 lbs ( [ :-:-_----••i � h.- - c.----- ----_� Base Shear,V=C j^= 81.4 lbs Base Shear,V=Cj^= 21.0 lbs Horizontal forces per level,F.=C„,V(RMI sect 2 6 6) Horizontal forces per level,F.=C„V(RMI sect 2.6.6) (Service Loads,E=0.7) Fs= 10.5 lbs @ 96 in(CM) (Service Loads) F,= 11.9 lbs @ 96in(CM) Note: Fs= 9.4 lbs @ 85.5 in(CM) F,= 0.0 lbs I `' (CM)=Product Center of Mass FT= 8.2 lbs @ 75 in(CM) Fr= 0.0 lbs .y i "},.-- - typically 6 inches above F,= 7.1 lbs @ 64.5 in(CM) F,= 0.0 lbs �' _- �- the top of shelf at each level. Fs= 5.9 lbs @ 54 in(CM) F,= 0.0 lbs F4= 4.8 lbs @ 43.5 in(CM) Fa= 0.0 lbs F3= 3.6 lbs @ 33 in(CM) F3= 0.0 lbs F,= 2.5 lbs @ 22.5 in(CM) Fz= 0.0 lbs F,= 1.3 lbs @ 12 in(CM) F,= 0.0 lbs F.= 3.7 lbs @ 45 in(CM) F.= 2.8 lbs @ 45in(CM) £f;= 81.4 lbs(@ Factored Loads) £f;= 21.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=VA Calculate Overturning Moment(Service),MOT=£fih; Check Single Frame/Bay Overturning Stability: MOT= 3767 in-lbs M.,= 1267 in-lbs MOT(LC#1)= 3767 in-lbs MRST(LC#i)= 21549 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST I MOT= 5.720>=1.5-No AB Reqd MRST= 21549 in-lbs MRST= 4950 in-lbs MOT(LC#2)= 1267 in-lbs Factor of Safety Factor of Safety MRST(LC#2)' 4950 in-lbs FOS=5.72 FOS=3.91 FOS=MR,T/MOT= 3.907>=1.5-No AB Regd -->No Anchorage Recid-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 j gg R,= 28 lbs 7 lbs -'*-T AUGE STEEL aaCwVR {{�7;[•ter,'{'j' r1RAP/S'w a 22GA ehk) RT= 0 lbs(No Uplift) 0 lbs(No Uplift) I� ,•A;- .LACE STRnc ANCHOe5 AT Overturning FOS= 5.720>=1.5 3.907>=1.5 FA CH ENS FRAME Aabrde'ICS, ? ,RiAX1 AT INTERIOR FRARtIi&. Sliding Restraint force,RRsT I FOS=14211bs/4.988>=1.5 OK 39lbs 1 5.294>=1.5 OK T'P''u iN v Reactions(Factored Loads): LC#1 LC#2 I I t iZ ANCROR Base Shear(R,J= 41 lbs 1016s a.iN,Ei"T,OR FRAMrs, t - ^OLTS PER I ' k Net Uplift(RT)= 0 lbs 0 lbs Overturning+Gravity(P.)= 1114 lbs 234 lbs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"O Powers Wedge-Bolt+Screw Anchor 2 118"embed. Embedment= 2.125 in rl . f'p= 3500 psi . :: ! ;:.._.....� .: ... e,;= 0 in<--Eccen.Of Anchor - - h„= 1.425 in 1.5(h,r)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)4V®= 3303 lbs;--ACI 318.08 Eq 0.20 Steel Strength(0.75)+N®= 10043 lbs< ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)+Vp,p= 1001 lbs<__ACI 318-08 Eq 0.22 Concrete Breakout(0.75)+Np„= 1517 lbs--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)4Vice,= 703 lbs s-ACI 318-08 Eq 0.22 Pullout Strength(0.75)+Nw= 1252 lbs< ACI 318-08 Eq 0.14 Concrete breakout X dir.Both anchors(0.75)+Vp,v= 1597 lbs< ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)+Vcp,= 1634 lbs< ACI 318-08 Eq D-31 Factored Tension Load IN.)= 0 lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vp)= 41 lbs 10 lbs MIN[gNsa,gNcbg,VNpn]/Nu= 99.99>2.5-OK-IBC I CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio CFSR+VSR)= 0.041<1.2 OK-1_C#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 48X 78"Tall"V'5 Level 1403002901 36 a 52 Northampton,MA-#2901 u.e.sr ox. IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 , Punching Shear Check: H/2 X—X H/2c�_IL (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P.)= 923 Ibs Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. >-Rack Post Y-Y= 2 in. I b.= 24.00 in. I I 0= 1.00 I N Vn= 22718 Ibs Eq.(22-10) ° I V.max= 15107 Ibs Eq.(22-10) +V„= 9064 lbs V,/+Ve= 0.102<1.00.K. (Punching Perimeter) Slab tension based on Soil bearing area check- I !. HFAM FIXED AT ONE END.FREE TO DEFLECT VERTICALLY a1/1 NOT ' Allow NOTATE AT OTHER—able soil bearing= 1500 psf UNIFORMLY CIST HIBUTEA LOAD Max.Vertical Load(Service)(P)= 699 Ibs Tort rquiv uouo o,tow a Area reqd.for bearing(A„A)= 0.47 ft m•.r "b"distance= 8.19 in r- `a v, Slab thickness(t)= 4.00 in - rxr S=(1.,)(t)o/6= 2.67 in/in a,. +M„(tension allowable)=+,(7.5)[(f'.)'a)(S)= 710 in-lb/in s,,.,;' ;:I I v m, �•<s nw:w.ee) .r Factored uniform bearing, =P./ 9. A�.qa= 13771b/in/in M.=w.Lz/3=(w.)[(b-(2"))/2)s]/3= 43.94 in-lb/in-Deft.End M1=22 in-lb(n M �`�---___ +zart-, �• ) . s �'20F1 MANInt= 0.062<1.0 O.K. `lj zaei'� Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 33 in Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in' /ft Allowable Concrete Slab Bending Moment,Mrs=S'f,= 1183.2 ft'Ibs/ft - -i_. Effective Cantilever Span Length(L.)at MW= 6.9 ft Total Length of Slab(I.+Width of Single Rack)= 9.6 ft a _ 1 Trib.Width of Slab=Trib width of Rack= 4.0 It Weight of Concrete Slab at Rack(P..,,.)= 1926 Ibs I 111111¢¢¢ll$} - Resisting Moment-Concrete Slab at Rack,M P.... 2= 111275 in•lbs c Load Combination#1: M-= 2901 in'Ibs �- Mnsrtn..p+ M—r,i,el= 129507 in`lbs 7 i Total Overturning FOS= 44.636 OK Load Combination#2: Mor= 1472 in'Ibs ..... MasrlA..q+ Masrpiae>= 117875 in'Ibs -- - ... Total Overturning FOS= 80.080 OK .._ 48V 78"Tal]'v"5 Level 1403002901 35 52 P, wm. Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN). No .-e, MAV 04/14/15 Total Load per shelf= 150 lbs<---assumes(2)shelves per level ­by #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 18.75 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 R(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 24 in Total Shelf Load/Level/Frame hg= 0 in hs= 0 in h,= Din hs= 0 in IT, 18 in 300 lbs -- h,= 18 in 300 lbs h3= 18 in 300 lbs I h,= 18 in 300 lbs III= 6 in 300 lbs Total Shelf Height,H,= 78 in Unit Height,H„= 78 in Unit Base Depth,D= 33 in ' Load Case 1•(Load cases per RMI sect.2.6 8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) l Seismic(Cj(Q= 0.090 W, Seismic(CJ(IP)= 0.090 W, -;; . Total Wt,W,=(0.67)[0.67PL]+DL= 773.35 lbs Total Wt,W,=(0.67%1)PL]+DL= 301 lbs j Base Shear,V=C,IpW,= 69.3 lbs Base Shear,V=C,IPW,= 27.0 lbs Horizontal forces per level,F,=CV(RMI-t 2 6 6) Horizontal forces per level,F.=C,„V(RMI sect 26 6) f --..._. (Service Loads,E=03) F,= 0.0 lbs @ 0 in(CM) (Service Loads) F,,= 0.0 lbs Note: Fs= 0.0 lbs @ 0 in(CM) Fe= QO lbs i (CM)=Product Center of Mass Fr= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs typically 6 inches above Fs= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs the top of shelf at each level. Fs= 15.7 lbs @ 84 in(CM) Fs= 16.3 lbs @ 84in(CM) F,= 12.3 lbs @ 66 in(CM) F4= 0.0 lbs F3= 9.0 lbs @ 48 in(CM) F3= 0.0 lbs F,= 5.6 lbs @ 30 in(CM) F,= 0.0 lbs F,= 2.2 lbs @ 12 in(CM) F,= 0.0 lbs F.= 3.6 lbs @ 39 in(CM) F„= 2.5 lbs @ 39in(CM) if,= 69.3 lbs(@ Factored Loads) Ili= 27.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=7f;h; Calculate Overturning Moment(Service),MOT=Ef;h, Check Single Frame I Bay Overturning Stability: MOT= 2901 in-lbs MOT= 1472 in-lbs MOT(LC#1)= 2901 in-lbs MIT(LC#1)= 18233 in-lbs Calculate Resisting Moment(Service),MIT Calculate Resisting Moment(Service),MIT FOS=MITI MOT= 6.284>=1.5-No AB Reqd MIT= 18233 in-lbs MIT= 6600 in-lbs MOT(LC#2)= 1472 in-lbs Factor of Safety Factor of Safety MIT(LC#2)= 6600 in-lbs FOS=6.28 FOS=4.48 FOS=MRST/MOT= 4.484>=1.5-No AB Reqd ->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R.= 24 Ibs 9 Ibs I - ...:t6 T.,A F STEEL A NCt>R ' STRAP t 22SiA a+I:k RT= O lbs(No Uplift) O lbs(No Uplift) �' PLACE ST2AF ATE WNO8 AT Overturning FOS= 6 284>=1.5 4.464>=1.5 EACH AT I TFRIO A R A-ES g 4 'MRX)AT 1A77ERiCP FRAMES Sliding Restraint force,RIT/FOS=119lbs 14.892>=1.5 OK 49lbs/5.167>=1.5 OK Ty? omo Reactions(Factored Loads) LC#1 LC#2 _(Z)A+4CKOR SOOTS nR Base Shear(Rj= 35 lbs 13 lbs ' ,>( ,) $TRAP A' I';WAEs Net Uplift(R,)= 0 lbs 0 lbs Overturning+Gravity(P„)= 923 Ibs 292 lbs : Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Boll+Screw Anchor 2 1/8 embed. Embedment= 2.125 in I , f'.= 3500 psi ..�',✓... /. _.....� _....:.j/._. e = 0 in<_-Eccen.Of Anchor - h„= 1.425 in 1.5(h,)=2.25 in Cone.thickness,t= 4 in #of Anchors,It= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)IlV„= 3303 lbs< ACI 31 B-08 Eq D-20 Steel Strength(0.75)+N„= 10043 lbs< ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)+V�,= 1001 lbs< ACI 318-08 Eq D-22 Concrete Breakout(0.75)0N�g= 1517 lbs<_ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)OV„v= 703 lbs< AC1318-08 Eq D-22 Pullout Strength(0.75)ON,= 1252 lbs< ACI 318-08 Eq D•14 Concrete breakout X dir.Both anchors(0.75)IlIVN= 1597 lbs< ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75),lV_= 1634 lbs< ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Ve)= 35 lbs 13 lbs MIN[cpNsa,(pNcbg,(pNpn]I Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 48V 60"Tall"T"5 Level 1403002901 34 a 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: -_�,I'H/2,y X—X H/2—T---� (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 883 Ibs Slab Concrete Vc= 3500 psi ° S Slab thickness(t)= 4 in. ,d Rack Post X-X= 2 in. ° I r Rack Post Y-Y= 2 in. a l b.= 24.00 24.00 in. � I P= 1.00 . N Vu= 22718 Ibs Eq.(22-10) v - V„max= 15107 Ibs Eq.(22-10) ¢V„= 9064 lbs �b" --- °- V„/OV„= 0.097<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I 7p- HEAFA rIX€D AT ONE END,FREE'FO DEFLECT VERTICALLY SLIT NOT Allowable soil bearing= RDTATE AT OTHER-UNIFORMLY DISTRIBUTED LOAD 1500 psi Max.Vertical Load(Service)(P)= 684 Ibs f -----e- Area reqd.for bearing(A_)= 0.46 fe r � ,.�! T—Iti o.ti U'+—Lew . ,.a=, "b"distance= 8.11 in Slab thickness(t)= 4.00 in S=(1")(t)'/6= 2.67 inslin ^+R+•..�ar ew.ea) MM tension allowable 7.5 f'< T'-� -F '_. 9 ( )=0d )[( )-l(S)° 710 in-lb/in II Factored uniform bearing,w„=P„/A„ = 13.44 lb/in/in Mu=wuL'/3=(wu)I(1b-(2-))/2)rl/3= 41.76 in-lb/in-Den.End M1=21 in-lb/in Mef�Mm= 0.059<1.0 O.K. M°.. w:1 ._.. °_ ._ Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 33 in I Slab thickness = 4.0 t Modulus of Rupture,t,=ZS'SQRT(Pc) - 443.7 psi Concrete Slab Section Modulus,S=b(t)2/6= 32.0 ins/ft Allowable Concrete Slab Bending Moment,Mw=S•f,= 1183.2 ft•lbs/ft - J{{-- --°---° Effective Cantilever Span Length(Lu)at Mw= 6.9 ft Total Length of Slab(1,+Width of Single Rack)= 9.6 it 1 !._ L Trib.Width of Slab=Trib width of Rack= 4.0 ft Of Weight of Concrete Slab at Rack(P_)= 1926 Ibs Resisting Moment-Concrete Slab at Rack,Masrlmq=P_•Lu/2= 111275 in•lbs Load Combination AM: M .-- or= 2282 in•Ibs MasrlR.uq+ MASrImq= 129507 in'Ibs �) Total Overturning FOS= 56.758 OK 1 I ' Load Combination#2: MOT . F = 1157 in'Ibs ... ,____. _.- Masr(la<q+Mesrlrn)= 117875 in'Ib5 --- --- Total Overturning FOS= 101.917 OK 48T a w a 60"Tall"T"5 Level 1403002901 33 52 o_ m. Northartpton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No Msss. we. MAV 04/14/15 Total Load per shelf= 150 lbs c---assumes(2)shelves per level #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 1875 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 24 in Total Shelf Load/Level/Frame hy= 0 i hs= 0 in hT= 0 in hs= 0 in hS= 13.5 in 300 lbs h,= 13.5 in 300 lbs h,= 13.5 in 300 lbs -� hz= 13.5 in 300 lbs IT,= 6 in 300 lbs .y4.... ._. _*.._..._ ,,.._.._. .._..w.,.-' Total Shelf Height,H,= 60 in Unit Height,H.= 60 in .. Unit Base Depth,D= 33 in Load Case 1*(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(Ip)= a090 W. Seismic(CJ(Q= 0.090 We try Total Wt,W,=(0.67)[0.67PLI+DL= 773.35 lbs Total Wt,W,=(0.67)[(1)PLI+DL= 301 lbs Base Shear,V=C,I,W,= 69.3 lbs Base Shear,V=Cj^= 27.0 lbs sp Horizontal forces per level,F.=C_V(RMI sec[2.6 6) Horizontal forces per level,F.=CyV(RMI-2.6a) ; (Service Loads,E=0.7) Fe= 0.0 lbs @ 0 in(CM) (Service Loads) Fe= 0.0 lbs NOW Fs= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs (CM)=Product Center of Mass Fr= 0.0 Ibs @0in(CM) Fr= 0.0 lbs typically 6 inches above Fs= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs the top of shelf at each level. Fs= 15.2 lbs @ 66 in(CM) Fs= 16.4 lbs @ 66in(CM) F4= 12.1 lbs @ 52.5 in(CM) F4= 0.0 lbs F,,= 9.0 lbs @ 39 in(CM) F3= 0.0 lbs F,= 5.9 lbs @ 25.5 in(CM) Fz= 0.0 lbs F,= 2.8 lbs @ 12 in(CM) F,= 0.0 lbs F„= 3.4 lbs @ 30 in(CM) F.= 2.5 lbs @ 30m(CM) If;= 69.3 lbs(@ Factored Loads) If;= 27.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),MOT=Ifh; Check Single Frame/Bay Overturning Stability: MOT= 2282 in-lbs MOT= 1157 in-lbs MOT(LC#1)= 2282 in-lbs MRST(LC#i)= 18233 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 7.991-1.5-No AB Reqd MRST= 18233 in-lbs MRST= 6600 in-lbs MOT(LC42)= 1157 in-lbs Factor of Safety Factor of Safety MRST(LC#2)= 6600 in-lbs FOS=7.99 FOS=5.71 FOS=MRST/MOT= 5.707-1.5-No AB Reqd ->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 f R.= 24 lbs 9 lbs -' .. iG"IT faA!GE STEEL A- R,= 0 lbs(No Uplift) 0 lbs(No Uplift) PLACE sTRatx AtaCttoRS+tt Overturning OS= 7 991-1.5 5 707-1.5 j j[ EACH Erb FRAME ANDS'-UP,: 9 MAXI A?INTERIOR FRAMES. Sliding Restraint force,RRST/FOS=114lbs/4.699-L5 OK 46lbs/4.914-1.5 OK TYP,„mO. Reactions(Factored Loads): LC#1 LC#2 - r Base Shear R = 35 lbs ' - - Is '° '" (2a ANCROA BOLTS PER ( b 13 - 5i qAP AT iN':ER pR€kAuES p Net Uplift(RT)= 0 lbs 0 lbs _ _ N - Overturning+Gravity(P.)= 883 lbs 272lbs i i Anchor Design(using"Cracked Concrete' Properties) , Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 l/8"embed. `-• °m°m°° °- "° '° Embedment= 2.125 in f'c= 3500 psi en'= 0 in c-_Eccen.Of Anchor E hd= 1.425 in 1.5(h„)=2.25 in Cone.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)4 V.= 3303 lbs< ACI 318-08 Eq D-20 Steel Strength(0.75)QN„= 10043 lbs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)pV,,= 1001 lbs---ACI 318-08 Eq D-22 Concrete Breakout(0.75)0N,= 1517 lbs<_-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)¢V,,,= 703 lbs< ACI 318-08 Eq D-22 Pullout Strength(0.75)�N,= 1252 lbs c-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)mVcss= 1597 lbs<_ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)bV,,= 1634 lbs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V,)= 35 lbs 13 lbs MIN[WNsa,rpNcbg,gNpnl/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 48T 90"Tall"X"9 Level 1403002901 , 32 F 52 Northampton,MA-#2901 Sr o.n IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 X—X H/2 "I e. (Design per section 22.5.4 ACI 318-08) Max-Factored Vertical Load(P„)= 1205 Ibs Slab Concrete Vc= 3500 psi - = Slab thickness(t)= 4 in. - Rack Post X-X= 2 in. I >-Rack Post Y-Y= 2 in. b.= 24.00 in. 9= 1.00 V V.= 22718 Ibs Eq.(22-10) ° -4 _ V.max= 15107 Ibs Eq.(22-10) --- VJOVn= 0.133<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: A- REAM FIXED AT ONE ENO,FREE TO DEFLECT VERTICALLY BtJT NOT Allowable soil bearing= 1500 psf ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LDAD Max.Vertical Load(Service)(P)= 867 Ibs = . Thai 44�ti.UnNarm Laatl ...�_� Area regd.for bearing(A„o) 058 ft r �L, n°v car "b"distance= 9.12 in Ja v. Slab thickness(t)= 4.00 in S=(1")(t)2/6= 2.67 in'/in +M,.(tension allowable)-0,(7.5)[(f°)`)(S)- 710 in-lb/in s "'• (rt.e.n...w a�e) Factored uniform bearing,w.=P„/A„q= 14.49 lb/in/in M„=w„L2/3=(w)[(b-(2"))/2)21/3= 61.21 in-lb/in-Defl.End M1=31 in-lb/in M �s a4¢i M„ IVInl= 0.086<1.0 O.K. ., Nei Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in Slab thickness(t)= 4.0 in .?I Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)2 16= 32.0 in'/ft Allowable Concrete Slab Bending Moment,M.=S-f,= 1183.2 fl'Ibslft j ---- J--F Effective Cantilever Span Length(L.)at Mm= 6.9 ft Total Length of Slab(4+Width of Single Rack)= 8.9 ft [ ,.(.. I _ tJ Trib.Width of Slab=Tnb width of Rack= 4.0 it Weight of Concrete Slab at Rack(P_,)= 1776 Ibs Resisting Moment-Concrete Slab at Rack,MRST(—)=Pte„,•L,/2= 94616 in'Ibs - ' �' � 1 Load Combination#1: Mor= 3767 in'Ibs -. - �- MRSTtwwq+W$T(—)= 110288 in'Ibs 1 L i 7 Total Overturning FOS= 29.275 OK I ....,..,.r1 .»... E;J Load Combination#2: MOT= 1267 in'Ibs MRST(Raa)+MRST(—)= 98216 in'Ibs — ___.. - �l �..... Total Overturning FOS= 77.530 OK 36X P� s .� 90"Tall"X"9 Level 1403002901 31 52 P�R- Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No MAV 04/14115 Total Load per shelf= 100 lbs<_-assumes(2)shelves per level #of Levels= 9 LEVEL IBC 2009 /ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 16.67 psf/shell Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 18 in Total Shelf Load/Level/Frame hs= 10.5 in 200 lbs hs= 10.5 in 200 lbs hT= 10.5 in 200 lbs hs= 10.5 in 200 lbs hs= 10.5 in 200 lbs �r h,= 10.5 in 200 lbs h3= 10.5 in 200 lbs f h2= 10.5 in 200 Ibs h,= 6 in 200 lbs Total Shelf Height,H,= 90 in Unit Height,H.= 90 in Unit Base Depth,D= 24 in ( I Load Case I*(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) i € _..._....... ...... - Seismic(C,)(IP)= 0.090 W. Seismic(C.)l= 0.090 W. [ Total Wt,W,=(0.67)[0.67PL]+DL= 908.02 lbs Total Wt,W. (0.67)I(1)PL]+DL= 234 lbs Base Shear,V=Cj^= 81.4 lbs Base Shear,V=C,I,W,= 21.0 lbs 5r--- Horizontal forces per level,F,=C„,V(RMI wa2 6 6) Horizontal forces per level,F.=CV(RMI 2.6 61 ) P (Service Loads,E=0.7) Fs= 10.5 lbs @ 96 in(CM) (Service Loads) Fs= 11.9 lbs @ 96in(CM) Note: Fs= 9.4 lbs @ 85.5 in(CM) FS= 0.0 lbs (CM)=Product Center of Mass F7= 8.2 lbs @ 75 in(CM) Fr= 0.0 lbs � ,._S = ...._ ....... typically 6 inches above FS= 7.1 lbs @ 64.5 in(CM) Fs= 0.0 lbs the top of shelf at each level. Fs= 5.9 lbs @ 54 in(CM) Fs= 0.0 lbs - F,= 4.8 lbs @ 43.5 in(CM) F4= 0.0 lbs F3= 3.6 lbs @ 33 in(CM) F3= 0.0 lbs F2= 2.5 lbs @ 22.5 in(CM) F2= 0.0 lbs F,= 1.3 lbs @ 12 in(CM) F,= 0.0 lbs Fu= 17 lbs @ 45 in(CM) F„= 2.8 lbs @ 45in(CM) Ef;= 81.4 lbs(@ Factored Loads) If;= 21.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef;h; Calculate Overturning Moment(Service),MOT=Yf;h; Check Single Frame I Bay Overtuming Stability: MOT= 3767 in-lbs MOT= 1267 in-lbs MOT(LC#1)= 3767 in-lbs MRsT(LC#i)= 15672 in-lbs Calculate Resisting Moment(Service),MRsT Calculate Resisting Moment(Service),MRST FOS=MRsT/MOT= 4.160>=1.5-No AB Reqd MRsT= 15672 in-lbs MRsr= 3600 in-lbs MOT(LC#2)= 1267 in-lbs Factor of Safety Factor of Safety MRsT(LC#2)= 3600 in-lbs FOS=4.16 FOS=2.84 FOS=MRsT/MOT= 2.842>=1.5-No AB Reqd ->No Anchorage Recid-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R.= 28 lbs 7 Ibs '134T GJGE STC ltl,A CC STRAP(a..22GA N,k R„= 0 lbs(No Uplift) Olbs(No Uplift) �,/.... PLACE S.RA;%ANCHORS AT Overturning FOS= 4.160>=1.5 2.842>=1.5 3. EACH M0 FRAME AND m°ec (MAX)AT 1NTER40A FRAmes. Sliding Restraint force,RRST/FOS=153lbs/5.364>=1.5 OK 42lbs/5.764>=1.5 OK �,y, "%'* T}'P?✓Np_ Reactions(Factored Loads)' LC#1 LC#2 c2iANCHrsR EfN.T3 PEP Base Shear(R,J= 41 lbs 10 lbs =.. , ,- STRAP AT IRTER;OR FRAMES Net Uplift(Rr)= O lbs 0 lbs / r Overturning+Gravity(Pd 1205 lbs 265 lbs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Boll+Screw Anchor 1/8"embed. '° Embedment= 2.125 in f',= 3500 psi / / ____/ .....:... el.= 0 in<-_-Eccen.Of Anchor h,= 1.425 in 1.5(hd)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection %= 3.5 in Ase= 0.103 in2 Shear Ahowables Tension Allowables Steel Strength(0.754V„= 3303 lbs•--ACI 318-08 Eq D-20 Steel Strength(0.75)gN„= 10043 lbs c-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)¢V,b,= 1001 lbs•--ACI 318-08 Eq D-22 Concrete Breakout(0.75)+N,b,,= 1517 lbs•_ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V�,= 703 lbs---ACI 318-08 Eq D-22 Pullout Strength(0.75)pN,= 1252 lbs•-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�V„R= 1597 lbs•-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)�V„v= 1634 lbs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs 0 lbs LC#1 LC#2 max tension stress rata(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V,)= 41 lbs 10 lbs MIN[,pNsa,(pNcbg,VNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36X 78"Tall"V'5 Level 1403002901 30 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04114/15 H/2 X—X H/2 ,er Punching Shear Check: (Design per section 22.5.4 ACI 318-08) r—` --.4-- ----1 N Max.Factored Vertical Load(P.)= 993 Ibs <° a Slab Concrete Vc= 3500 psi 1 1 = Slab thickness(t)= 4 in. ^ 1 Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. �- I 1 b,= 24.00 in. (t= 1.00 1 N V.= 22718 Its Eq.(22-10) V.max= 15107 Ibs Eq.(22-10) L --4j sos OVA= a Ibs �b0 --- V,IOV„= 0.110<1.0 O.K. Punching Perimeter) I 2C. 9LATA FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based on Soil bearing area check: r707ATE AT OTHER-..UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psf i Max.Vertical Load(Service)(P)= 723 Ibs ia. 1 Tori[Ar.w onlro.o,Leb Area reqd.for bearing(A„a,)= 0.48 ft2 "b"distance= 8.33 in a v„ . . . Slab thickness(t)= 4.00 in A—i �r-- S=(1")(t)2/6= 2.67 m'/in ', QM.(tension allowable) = 710 in-lblin ,�` v +<a,n.,.w—d) s' s Factored uniform bearing,wu=P„/A„q,= 14.31 Ibin/in '- ra, - s "--U.) r sxt „ Mu=w„0/3=(w„)((b-(2'7)/2)2]/3= 47.82 in-lb/in-Dell.End Ml=24 in-Ib(n MAW1= 0.067<1.0 Q.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in Slab thickness(t)= 4.0 in 10 Modulus of Rupture,f,=7.5'Sa RT(fc)= 443.7 psi } 1 Concrete Slab Section Modulus,S=b(t)16= 32.0 in'Ift *- -°--• r— ---.-Q Allowable Concrete Slab Bending Moment,Mw=S'f,= 1183.2 ft'Ibs/ft X- • r� ,rI Effective Cantilever Span Length(L,)at M„= 6.9 it I i._. } ! I;_/ i I:'_ f I Total Length of Slab(I,+Width of Single Rack)= 8.9 R L;J � j__ Trib.Width of Slab=Trib width of Rack= 4.0 ft Weight of Concrete Slab at Rack(P_)= 1776 Ibs Resisting Moment-Concrete Slab at Rack,M,(a )=P_ L,/2= 94616 in'Ibs 1 Load Combination#1: MOT= 2901 in•lbs I---- MRST(F-k)+MRST(—)= 107876 Yn'Ibs Total Overturning FOS= 37.181 OK f Load Combination#2: MOT= 1472 in'Ibs � / M—(l k)+MRST(—)= 99416 in'Ibs Total Overturning FOS= 67.540 OK 36V w SnM M p 78"Tall"V"5 Level 1403002901 29 62 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No vas=er MAV 04/14/15 Total Load per shelf= 150 Ibs o--assumes(2)shelves per level #of Levels= 5 LEVEL IBC 2009/ASCE 7-05 if 2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 18 in Total Shelf Load!Level/Frame he= Din hs= 0 in hT= 0 i hs= 0 in hs= 18 in 300 Ibs h,= 10 in 300 Ibs _ h3= 18 in 300 lbs i I hi= 18 in 300 Ibs hr= 6 in 300 Ibs sk-- Total Shelf Height,Ht= 78 in ' Unit Height,Hu= 78 in Unit Base Depth,D= 24 in Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2•(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(1.)= 0.090 W. Seismic(C.)(Ip)= 0.090 W, ,.,. Total Wt,W,=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W,=(0.67)[(1)PL]+DL= 301 Ibs Base Shear,V=C,ipW,= 69.3 Ibs Base Shear,V=C,IRW3= 27.0 Ibs j Horizontal forces per level,F,=C,,,V(RMI sect 2.6.6) Horizontal forces per level,F.=Ce,V(RMI sae 2.6a) t (Service Loads,E=0.7) F.= 0.0 Ibs @ 0 in(CM) (Service Loads) Fs= 0.0 Ibs Note: FS= 0.0 Ibs @ 0 in(CM) FS= 0.0 Ibs (CM)=Product Center of Mass Fr= 0.0 Ibs 0 in(CM) F,= 0.0 Ibs typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) FS= 0.0 Ibs the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) ;} F,= 12.3 Ibs @ 66 in(CM) F.= 0.0 Ibs Fs= 9.0 Ibs @ 48 in(CM) F3= 0.0 Ibs Fz= 5.6 Ibs @ 30 in(CM) F2= 0.0 Ibs F,= 2.2 Ibs @ 12 in(CM) Ft= 0.0 Ibs Fu= 3.6 Ibs @ 39 in(CM) F.= 2.5 Ibs @ 39in(CM) If= 69.3 Ibs(@ Factored Loads) If,= 27.0 Ibs(@ Factored Load$) Calculate Overturning Moment(Service),Mot=If;hl Calculate Overturning Moment(Service),MOT=If;h; Check Single Frame f Bay Overturning Stability: MOT= 2901 in-Ibs Mot= 1472 in-Ibs MOT(LC#i)= 2901 in-Ibs MRST(LC#1)= 13260 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST!MOT= 4.570-1.5-No AB Reqd MRST= 13260 in-Ibs MRST= 4800 in-Ibs MOT(LC#2)= 1472 in-Ibs Factor of Safety Factor of Safety MRST(1-C#2)= 4800 in-Ibs FOS=4.57 FOS=3.26 FOS=MRST/MOT= 3.261-1.5-No AB Reqd -->No Anchorage Reqd•No Net Uplift at LC#1 and LC#2 `Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 ° R,= 24 Ibs 9 Ibs AAsEEL ANCWOR STRAP IV..225GA d',kb R„= 0 Ibs(No Uplift) 0 Ibs(No Uplift) t I .. Wit:stRac AtacHa+aS AT Overturning FOS= 4.570-1.5 3 261-1.5 EA'4 SKD FRAMs;ANDs',O'- I"X)AT INTERIOR FRAMES, Sliding Restraint force,RRST!FOS=127lbs 15.232-1.5 OK 53lbs 15.61-1.5 OK --x;•qr - TMp JN r, Reactions(Factored Loads): LC#1 LC#2 Base Shear(Rj= 35 Ibs 13 Ibs '--{2eat�Ct+cR Solis PER I (2IANCA''SOLT 1RERAr#fF$ Net Uplift(R,.)= 0 Ibs 0 Ibs Overturning+Gravity(Pu)= 993 lbs 328lbs ,£ Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 118"embed. Embedment= 2.125 in f',= 3500 psi `'�. ( ....._. e,;= 0 in---Eccen.Of Anchor h,= 1.425 in 1.5(ha)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)¢V_= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75)+N®= 10043 Ibs<--ACI 318-08 Eq 0-3 Concrete breakout Y dir.(0.75)mV.,= 1001 ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)bNpw= 1517 Ibs c-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)pV,,= 703 Ibs-ACI 318-08 Eq D-22 Pullout Strength(0.75)mNp„= 1252 Ibs c-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75),1 V,o = 1597 Ibs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OV..= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(Nu)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vu)= 35 Ibs 13 Ibs MIN[tpNsa,tpNcbg,rpNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#i(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36V P,q.n Ro a 66"Tall"U no"5 Level 1403002901 28 52 P�- Northampton,MA-#2901 B, on. IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 041`14115 L.H/2 X—X L.H/2L, r L. Punching Shear Check: (Design per section 22.5.4 ACI 318-08) -- --e-- ---� N Max.Factored Vertical Load(P„)= 957 Ibs a° Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 m. Rack Post Y-Y= 2 in. � ° I >- _i bo= 24.00 in. �= 1.00 ° 1 ('4 V,= 22718 Ibs Eq.(22-10) _ - °° I = V„max 15107lbs Eq.(22-10) n � < ---- OV„= 9064lbs �bo VAV„= 0106<1.0O.K. (Punching Perimeter) ZR- Slab tension based on Soil bearing area check: OLAIA FIXED AT ONE ENO,FREE TO DEFL£Ct VERTICALLY BUT NOT Allowable soil bearing= 1500 psi ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD i Max.Vertical Load(Service)(P)= 710 Ibs ` "" iI rw.w,umlramn Leatl Area reqd.for bearing(A„,)= 0.47 ft' "b"distance= 8.26 in R v, . . . . w•. Slab thickness(t)- 4.00 in S=(1")(q'/6= 2.67 in3/in +, �Mm(tension allowable)=p,(7.5)[(f'j`j(S)= 710 in-lb/in s^• .,,{. a Factored uniform bearing,w„=P„/A,,,p= 14.03 lb/in/in M Tt� nma et d,ll,cb6,rttl '' M.=wuL 2 l3=(w„)[(b-(2"))l2)Z]13= 45.79 in-Ibtin-Defl.End M1=23 in-Ibiin Mcm MJ Mnt 0.064<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in Slab thickness(t)= 4.0 in Modulus of Rupture,f,=T5`SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in3/ft �'^ •° Ir Allowable Concrete Slab Bending Moment,M,,,=S'f,= 1183.2 fl'Ibs/ft Effective Cantilever Span Length(L,)at Mp,= 6.9 fl ,, f Total Length of Slab(4+Width of Single Rack)= 8.9 ft I r Trib.Width of Slab=Trio width of Rack= 4.0 ft I LE F,E _. _; Weight of Concrete Slab at Rack(P-_)= 1776 Ibs Resisting Moment-Concrete Slab at Rack,MR (T i,)=Pte„, Lc/2= 94616 in`lbs r ; M - Load Combination#1: M_= 2488 in'Ibs `- MRST(Rw#)*MRST(—)= 107876 in`lbs Total Overturning FOS= 43.36_7 OK Load Combination#2: MoT= 1262 in`lbs M RS(RF)* M RST(Y )� 99416 in`lbs .,.._.. .___,,... Total Overturning FOS= 78396 OK 36U 66"Tall"U"5 Level 1403002901 27 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No Mss. MAV 04/14/15 Total Load per shelf= 150 Ibs<--assumes(2)shelves per level '-tl By #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 pst/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-O"oc) Shelf depth(ea.side)= 18 in Total Shelf Load/Level I Frame hs= 0 in hs= 0 i h,= 0 in hs= 0 in hs= 15 in 300lbs h,= 15 in 300 Ibs hs= 15 in 300 Ibs h,= 15 in 300 Ibs h,= 6 in 300 Ibs ° Total Shelf Height,H,= 66 in Unit Height,Hu= 66 in Unit Base Depth,D= 24 in Load Case 1-(Load cases per RMI sect.2.6.80)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) i Seismic(C,)(lo)= 0.090 W. Seismic(Ca(1c)= 0.090 W. Total Wt,W,=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W,=(0.67%1)PL]+DL= 3011bs _,. Base Shear,V=C,I,W,= 69.3 Ibs Base Shear,V=C,I,W,= 27.0 Ibs I Horizontal forces per level,F.=C„V(RMI acct 26.6) Horizontal forces per level,F.=C„V(RMI se n 26.6) (Service Loads,E=0.7) F5= 0.0 Ibs @ 0 in(CM) (Service Loads) Fa= 0.0 Ibs € Note: Fa= 0.0 Ibs 0 in(CM) Fs= 0.0 Ibs (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) Fr= 0.0 Ibs - - - ...__...- typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fa= 0.0 Ibs ^ ` the top of shelf at each level. Fs= 15.4 Ibs @ 72 in(CM) F,= 16.4 Ibs @ 72in(CM) 3 F,= 12.2 Ibs @ 57 in(CM) F,= 0.0 Ibs F,= 9.0 Ibs @ 42 in(CM) F3= 0.0 Ibs F,= 5.8 Ibs @ 27 in(CM) Fz= 0.0 Ibs F,= 2.6 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.5 Ibs @ 33 in(CM) F.= 2.5 Ibs @ 33in(CM) If;= 69.3 Ibs(@ Factored Loads) If;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),MOT=If h; Check Single Frame I Bay Overturning Stability: Mot= 2488 in-Ibs MOT= 1262 in-Ibs MOT(LC#1)= 2488 in-Ibs MRST(LC#i)= 13260 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 5.331-1.5-No AB Reqd MRST= 13260 in-Ibs MRST= 4800 in-Ibs MOT(LC#2)= 1262 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 4800 in-Ibs FOS=5.33 FOS=3.80 FOS=MRST/MOT= 3.804>=1.5-No AB Reqd -->No Anchorage ReEld-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 1 R,= 24 Ibs 9 Ibs rA;JGE STEEL A.-HOR STS STRAP a 2$GA HO Rr= 0 Ibs(No Uplift) 0 Ibs(NO Uplift) � ,�, PLACE SYRAr+ANOHORS AT Overturning FOS= 5 331-1.5 3.804-1.5 EACH ENO FRAME At 08.4 cc. !MAX)AT INTERIOR FRAMES. Sliding Restraint force,RRST I FOS=123lbs 1 5.054-1.5 OK 51lbs/5.378-1.5 OK r,a'�•••-....... T*'R 1 utw_ I Reactions(Factored Loads): LC#1 LC#2 III -(„ _ __ Base Shear(Rj= 35 Ibs 13 Ibs .. „ ,-*---?-- STRAP ln RNTBOLTS FRAMES - 1 Net Uplift(Rr)= 0 Ibs O lbs Overturning+Gravity(P.)= 957 lbs 309 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 1/8 embed. Embedment= 2.125 in I f',= 3500 psi �/.. J/ ........!' .....fl.... e,;= 0 in<---Eccen.Of Anchor E - h,I= 1.425 in 1.5(ha)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowabies Steel Strength(0.75)�V„= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75)m N„= 10043 tbs<_-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)OV,,,= 1001 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)+N ft= 1517 Ibs<-ACI 318-08 Eq 0-5 Concrete breakout X dir.Single(0.75)�Vc,= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)+N,= 1252 Ibs<-_ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�V,Iy= 1597 Ibs<_-ACI 318-08 Eq 0-22 LC#1 LC#2 Concrete pryout(0.75)+V,,,= 1634 Ibs<-ACI 318-08 Eq 0-31 Factored Tension Load(N,)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V,)= 35 Ibs 13 Ibs MIN[cpNsa,gNcbg,rpNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36U R� 60"Tall"T"5 Level 1403002901 26 52 Pte„„N... Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14115 H/2 X—X H/2 Punching Shear Check: (Design per section 22.5.4 ACI 318-08) (---r– --.a-- ----) N Max.Factored Vertical Load(P„)= 938 Ibs Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in Rack Post Y-Y= 2 in. I a I 1 b 24.00 in I A= i.DO I I N y a t\ V"= 22718 Ibs Eq —.(22-10) i - v - I = V„max= 15107 Ibs Eq.(22-10) ov„= 9064 Ibs �bC _----°_— -� VAVn= 0.104<1.0O.K. (Punching Perimeter) HEAM FIXED AT ONE.END,FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based On SOIL bearing area Check: Allowable soil bearing 1500 psi ROTATE AT OTHER—UNIFORMLY DISTRIBUTEO LOAD = I Max.Vertical Load(Service)(P)= 704 Ibs I` "- !r - Tot,l screw-untror,R Less , Area reqd.for bearing(A,)= 0.47 f? -: e" R..v _ice "b"distance= 8.22 in a v, _ Slab thickness(t)= 400 in S=(1')(t)'/6= 2.67 in3/inr r a, ,<a.rt..:c,r,na a '. 4M„(tension allowable)=4,(7.5)((f'J) 1(S)= 710 in-lb/in a°F � ) 8 { Factored uniform bearing,w,=P,/A„a,= 13.89 Ib/in/in � �' s {.,..,� a.eTrx M„=w,L'13=(wu)i(b-(2"))12)')13= 44.78 in-lbiin-Dell.End M1=23 In-lb(m µ L i"`'� -�+++�- (.x e.n.,e a,,,d) 'mac� MAIVInt= 0.063 a 1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in vs F Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5•SQRT(fc)= 443.7 psi in3/R Concrete Slab Section Modulus,S=b t'/6= 320 Allowable Concrete Slab Bending Moment,Ma=S'f,= 1183.2 R'Ibs/R Effective Cantilever Span Length(Q at Mdi= 6.9 R # I t-i Total Length of Slab(I"+Width of Single Rack)= 8.9 R '•---1 Trib.Width of Slab=Trib width of Rack= 4.0 ft _� g j �- Weight of Concrete Slab at Rack(P—)= 1776 Ibs z[�? r ) . Resisting Moment-Concrete Slab at Rack,MRST(me)=P—'4/2= 94616 in'Ibs q�( / t..:'i t�,j — Load Combination#1: MOT= 2282 in'Ibs .�„_....._ MRSTO—)+MRST(—)= 107876 in'ibs Total Overturning FOS= 47.278 OK t /.. Load Combination#2: MOT= 1157 in'Ibs ---------- MRST(I-u+MRST(W)= 99416 In"Ibs '"., ......, , Total Overturning FOS= 85.958 OK 36T P�R� „� - 60"Tall"T"5 Level 1403002901 25 52 P�- Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No M•�6. MAY 04/14/15 Total Load per shelf= 150 Ibs c_--assumes(2)shelves per level ­By #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSINH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 18 in Total Shelf Load/Level/Frame It,= 0 in hg= 0 in hr= Din hs= 0 in hs= 13.5 in 300 Ibs _ h•= 13.5 in 300 Ibs _ h3= 13.5 in 300 Ibs # hz= 13.5 in 300 Ibs h,= 6 in 300 Ibs Total Shelf Height,H,= 60 in Unit Height,Hu= 60 in Unit Base Depth,D= 24 in Load Case 1'(Load cases per RMI sect.2.6.8(1)1 Load Case 2`(Load cases per RMI sect.2.6.8(2)) t k S _ E Seismic(C,)(Ip)= 0.090 W. Seisnc(C,)(b)= 0.090 W. Total Wt,W.=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W.=(0.67)[(1)PL]+DL= 301 Ibs C Base Shear,V=Cj^= 69.3 Ibs Base Shear,V=C,I^= 27.0 Ibs Horizontal forces per level,F.=C„V(RMI sect 26 6) Horizontal forces per level,F.=C„V(RMI sea2 6.6) ] � (Service Loads,E=07) FS= 0.0 Ibs @ 0 in(CM) (Service Loads) Fs= 0.0 Ibs Note: Fa= 0.0 Ibs @ 0 in(CM) Fa= 0.0 Ibs (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs - - typically 6 inches above F6= 0.0 Ibs @ 0 in(CM) F,,= 0.0 Ibs the top of shelf at each level. Fs= 15.2 Ibs @ 66 in(CM) Fs= 16.4 Ibs @ 66in(CM) F,= 12.1 Ibs @ 52.5 in(CM) F,= 0.0 Ibs F3= 9.0 Ibs @ 39 in(CM) F,= 0.0 Ibs F,= 5.9 Ibs @ 25.5 in(CM) Fz= 0.0 Ibs F,= 2.8 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.4 Ibs @ 30 in(CM) F.= 2.5 Ibs @ 30in(CM) Sf,= 69.3 Ibs(@ Factored Loads) if;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef;h, Calculate Overturning Moment(Service),Mot=Ef;l1, Check Single Frame I Bay Overturning Stability: MOT= 2282 in-Ibs MOT= 1157 in-Ibs MOT(LC4")= 2282 in-Ibs MRST(LC#1)= 13260 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 5.811>=1.5-No AB Reqd MRST= 13260 in-Ibs MRST= 4800 in-Ibs MOT(LC#2)= 1157 in-ibs Factor of Safety Factor of Safety MRST(LC#2)= 4800 in-Ibs FOS=5.81 FOS 4.15 FOS=MST/MOT= 4.150>=1.5-No AB Reqd ->No Anchorage Recid•No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 i R.= 24 Ibs 9 Ibs I _�G T G11Ga STEEL ARCN:3R _. STRAD(t°.ws 22GAffk) R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) � ��, PLACE STRAF V40W RS AT Overturning FOS= 5.811>=1.5 4.150>=1.5 - EACH Etta FRAME FRAMES. taiR%)AT 1`(T$R3L$R CRANES. Sliding Restraint force,RRST/FOS=120lbs/4.966-1.5 OK 501bs 15.262>=1.5 OK - Tr.F I umo. Reactions(Factored Loads): LC#1 LC#2 i - (2 ` - `.ANCHOR SOLTS PER Base Shear(RJ= 35 Ibs 13 Ibs a, z sr!tA,a AX 3N±EtttzR F;Wr ES Net Uplift(R,,)= 0 Ibs 0 Ibs - Overturning+Gravity(P,)= 938 Ibs 300 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 21/B embed. ' Embedment= 2.125 in '' , f',= 3500 psi . ' _....... ...{... e,;= 0 in<__Eccen.Of Anchor It,i= 1.425 in 1.5(hr)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)+V®= 3303 Ibs c--ACI 318-08 Eq D-20 Steel Strength(0.75)iIN„= 10043 Ibs<_ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)¢V,v= 1001 Ibs< ACI 318-08 Eq D-22 Concrete Breakout(0.75)ON,,= 1517 Ibs<_ACI 318-08 Eq 0-5 Concrete breakout X dir.Single(0.75)+V,�= 703 Ibs<-_ACI 318-08 Eq D-22 Pullout Strength(0.75)ONP,= 1252 Ibs<--ACI 318-08 Eq 0.14 Concrete breakout X dir.Both anchors(0.75)+V,= 1597 ibs<_ACI 318-08 Eq 0-22 LC#1 LC#2 Concrete pryout(0.75)OV.,= 1634 Ibs< ACI 318-08 Eq D-31 Factored Tension Load(NP)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratty(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V,)= 35 Ibs 13 Ibs MIN[WNsa,rpNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC I CBC,sect 19081.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36T 78"Tall"V"5 Level 1403002901 24 52 P�Rte. Northampton,MA-#2901 IBC 2009/ASCE 7-05!2008 RMI(ANSI/MH16.1-08) MAV 04114/15 H/2 X—X H/2 tee, Punching Shear Check: (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1079 lbs Slab Concrete Cc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. Rack Post Y-V= 2 in. I a I } I 1 bo= 24.00 in. p= too . C-4 V„= 22718 lbs Eq.(22-10) 1 , o V.max= 15107 lbs Eq.(22-10) ---- WV= 9064 lbs �bc --- a. yjoyV = 0.119<1.00.K. (Punching Perimeter) 7C- HLArA FIXED AT ONF END,FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based on Soil bearing area check: ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psf i Max.Vertical Load(Service)(P)= 754 lbs Tors t4uw.uMro.rn Leae s Area regd.for bearing(A,)= 0.50 ft r r �?1"• N N+V . "b"distance= 8.51 in � V. Slab thickness(t)= 4.00 in µ,,,, N."-4) , , , ,�wr• S=(1")(t)'/6= 2.67 in'/in a , 1I I . y M• 6,M.esM end) i pM,6(tension allowable)=d),(7 5)[(f',)o](S)= 710 in-lb/in Factored uniform bearing,w„=Pu/A„i= 14.92 Ib/m/in M e 3a" � z Tr> Mu=wuL213= wu (b-2"))/2 1 3= 52.62 In-lb/In-Deft.End M1=27 in-lb/In L �u e.nuea ene� ( )[ ( )1 �m_ sal M„/omm= 0.074<1.0 O.K. Nx1 n± Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: SSS Width of Single Rack= 18 in Slab thickness(t)= 4.0 in 3 I Modulus of Rupture,f,=7.5•SQRT(Tc)= 443.7 psi )< Concrete Slab Section Modulus,S=b(t)2 16= 32.0 in3/R Allowable Concrete Slab Bending Moment,Mmi=S'f,= 1183.2 ft'Ibs/ft Effective Cantilever Span Length(L.)at M„i= 6.9 ft Total Length of Slab(4+Width of Single Rack)= 8.4 ft € E-. i Trib.Width of Slab=Trib width of Rack= 4.0 ft Weight of Concrete Slab at Rack(P_)= 1676 lbs Resisting Moment-Concrete Slab at Rack,MRSTt r)=Pte„,`L,/2= 84261 idlbs Load Combination#11: MOT= 2901 in`lbs MRSfl—)+MRST(—)= 94206 io`Ibs Total Overturning FOS= 32.469 OK g Load Combination#2: MOT= 1472 in'Ibs MRST(I-k)+ MRST(—)= 87861 In`lbs -... ..... Total Overturning FOS= 59.690 OK 30V 78"Tall"V'5 Level 1403002901 23 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No » sr MAV 04114/15 Total Load per shelf= 150 Ibs c--assumes(2)shelves per level r #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 30.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 15 in Total Shelf Load/Level I Frame hs= 0 in hs= 0 in h,= 0 in hs= 0 in hs= 18 in 300 Ibs h4= 18 in 300 lbs h3= 18 in 300 Ibs h,= 18 in 300 Ibs h,= 6 in 300 Ibs ,,... Total Shelf Height,H,= 78 in - Unit Height,H.= 78 in } -- Unit Base Depth,D= 18 in Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismic(Cj(Iv)= 0.090 W. Seismic(CJ(IP)= 0.090 W. Total Wt,W,=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W,=(0.67)[(1)PL]+DL= 301 Ibs Base Shear,V=CjpW,= 69.3 Ibs Base Shear,V=C,I^= 27.0 Ibs Horizontal forces per level,F.=Cr,V(RMI ae t 2B 6) Horizontal forces per level,F.=C„V(RMI sect 2.6.6) P ; I (Service Loads,E=0.7) Fs= 0.0 Ibs @ 0 in(CM) (Service Loads) Fe= 0.0 Ibs Note: Fs= 0.0 Ibs @ 0 in(CM) F. 0.0 Ibs f (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs -""""""" typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) F.= 0.0 Ibs ' ` the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) F4= 12.3 Ibs @ 66 in(CM) F,= 0.0 Ibs F3= 9.0 Ibs @ 48 in(CM) F3= 0.0 Ibs F,= 5.6 Ibs @ 30 in(CM) F,= 0.0 Ibs F,= 2.2 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.6 Ibs @ 39 in(CM) F„= 2.5 Ibs @ 39in(CM) 7f,= 69.3 Ibs(@ Factored Loads) if,= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef,h, Calculate Overturning Moment(Service),MOT=Ffh, Check Single Frame/Bay Overturning Stability: MOT= 2901 in-Ibs MOT= 1472 in-Ibs MOT(LC#1)= 2901 in-Ibs MRST(LC#1)= 9945 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRsT FOS=M­/MOT= 1428>=1.5-No AB Reqd MRST= 9945 in-Ibs MRST= 3600 in-Ibs MOT(LC#2)= 1472 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 3600 in-Ibs FOS=3.43 FOS=2.45 FOS=MRST/MOT= 2.446>=1.5-No AB Reqd -->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 Ibs 9 Ibs - IGHT GAUGE STEEL ANCHOR STRAR ft"w r 22GA eu) P,.= 0 Ibs(No Uplift) 0 Ibs(No Uplift) "" ,' .P LACE STRAP ANCHORS AT Overturning OS= 3 428>=1.5 2.446>=1.5 EACH END FRAME AND g 'MkX)AT LNTER40A FRAMPS_ Sliding Restraint force,RRST I FOS=1371bs 15.648>=1.5 OK 5811bs/6.152>=1.5 OK .. rr- ss i`'t*'Urao_ Reactions(Factored Loads): LC#1 LC#2 Base Shear(R,)= 35 Ibs 13 Ibs STRAP AT INTERIOR FRAMES Net Uplift(Rr)= 0 Ibs 0 Ibs `..� ' .• \ ,,r `...,,y Overturning+Gravity(Pj 1079 lbs 371 Ibs " I Anchor Design(using"Cracked Concrete"Properties) " Try:318"0 Powers Wedge-Bolt+Screw Anchor2 1/8"embed. °-" - """ ` Embedment= 2.125 in , f'°= 3500 psi J/ '........r ._..:.�,/... e,;= 0 in<---Eccen.Of Anchor - hr= 1.425 in 1.5(h„)=2.25 in Cone.thickness,t= 4 in #of Anchors,n= 2-anchors per connection S.= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)OV„= 3303 Ibs c--ACI 318-08 Eq D-20 Steel Strength(0.75)QN„= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)OV,,,= 1001 Ibs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)0 N,t= 1517 Ibs<-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)mV,�= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)�N,= 1252 Ibs<-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)+Vcbg= 1597 Ibs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)+V,,= 1634 Ibs c ACI 318-08 Eq D-31 Factored Tension Load(N")= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V")= 35 Ibs 13 Ibs MIN[(pNsa,(pNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 19081.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30V Wall Shelving/Single Sided Pte— SCR. a 120"Tall"YZ"9 Level 1403002901 2z sz Northampton,MA-#2901 u.x By — IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14115 Punching Shear Check: H/2 X—X H/2 Ch—BY (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1367 Ibs a— --a-- ---- N Slab Concrete f',= 3500 psi 1< a \ Slab thickness(t)= 4 in Rack Post X-X= 2 in. °4 Rack Post Y-Y= 2 in. bo= 24.00 in. 4 r A= 1.00 V.= 22718 Ibs Eq.(22-10) V.max= 15107 Ibs Eq.(22-10) 1 °a I = itVn= 9064.38 lbs ` ° ----4� VJOVn= 0.151 <1.0 O.K. �bo ° (Punching Perimeter) Slab tension based on Soil bearing area check: ... REAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf ROTATE AT OTHER--UNIFORMLY DISTRIBUTED LOAD Max.Vertical Load(Service)(P)= 924 Ibs I f' Area regd.for bearing(A„,)= 0.62 ft � �F I TM°I rw,;r.t/niform toad . ..$.F; "b”distance= 9.42 in ..t Slab thickness(t)= 4.00 in - R v, S=(,)(t)2/6= 2.67 in'/in 0M,n(tension allowable)=Q7.5)[(f j) ](S)= 710 in-lb/in shear V Ms (#Y Ytaa°iM.nd) . Factored uniform bearing,w„=P„/A,,,p= 15 lb/in/in i M„=w„LZ/3=(w„)[(b-(2'•))/2)2]/3= 70.66 in-lblin-Defl.End M1=36 in-lb/in ra r-azzt y MAMn,= 0.100<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 21 in Slab thickness(t)= 4.0 in j p.., ! t•(— # Modulus of Rupture,f,=7 5•SQRT(rc)= 443.7 psi f" J'14 Concrete Slab Section Modulus,S=b(t)2 16= 32.0 in'/fI ( ' Allowable Concrete Slab Bending Moment,M,iVFS=S•f,/1.5= 1183.2 fl•Ibs/ft =f-� ----• ( Effective Cantilever Span Length(L,)at M,11= 6-9 ft Total Length of Slab(h+Width of Single Rack)= 8,8 ft _ F�L f`, � Y,L_ � i `•,j Trib.Width of Slab=Trib width of Rack= 8.0 ft L- Weight of Concrete Slab at Rack(P_)= 3452 Ibs (i�� � � �t .� � __ +i Resisting Moment-Concrete Slab at Rack,MRsT(dw)=P_•LJ2= 178727 in•lbs I I t C A.:'v r .s Load Combination#1: MOT= 4890 in•lbs MRST(R,u)+ MRSTIsbeJ° 192377 in•Ibs Total Overturning FOS= 39.342 OK Load Combination#2: MOT= 1663 in•lbs i � — M-T(Rack)+MRST(shb)= 1816771n•Ib3 �.1. -^•••_.... F . •_ -. ._tom., Total Overturning FOS= 109.370 OK - -• , Wall-30YZ Wall Shelving/Single Sided 120"Tall"YZ"9 Level 1403002901 z1 52 p,q«I"am< Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N) No -6y MAV 04/14115 Total Load per shelf= 100 Ibs c �a 6r #of Levels= Wall 9 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 10.00 psf/sheN Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 It(Frames are assumed to be 4'-0"oc) Shelf depth= 30 in Total Shelf Load/Level h,= 16 in 200 Ibs ha= 14 in 200 Ibs hr= 14 in 200 Ibs he= 14 in 200 Ibs hs= 14 in 200 Ibs h4= 14 in 200 Ibs hs= 14 in 200 Ibs h,= 14 in 200 Ibs It,= 6 in 200 Ibs Total Shelf Height,Hr= 120 in Unit Height,H.= 120 in Unit Base Depth,D= 21 in s Load Case 1 (Load cases par RMI sec[.2.6 8(1)) Load Case 2*(Load cases per RMI sect 2.6.8(2)) N, Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(lp)= 0.090 W, Total Wt,W._(0.67)[0.67PL)+DL= 908 Ibs Total Wt,W,_(0.67%1)PL]+DL= 234 Ibs i Base Shear,V=C,1^= 81.4 Ibs Base Shear,V=Cj^= 21.0 Ibs Horizontal forces per level,F.=C„V(RMI sect 2,6.6) Horizontal forces per level,F.=C,„V(RMI a 2.e.6) t - ._.- (Service Loads,E=0.7) Fa= 10.9 Ibs @ 126 in(CM) (Service Loads) Fs= 11.9 Ibs @ 126in(CM) i NOW Fa= 9.5 lbs @ 110 in(CM) Fs= 0.0 Ibs (CM)=Product Center of Mass FT= 8.3 Ibs @ 96 in(CM) F,= 0.0 Ibs - typically 6 inches above F5= 7.1 Ibs @ 82 in(CM) F,= 0.0 Ibs -11r-- [ _ the top of shelf at each level. Fs= 5.9 Ibs @ 68 in(CM) F,= 0.0 Ibs F,= 4.7 Ibs @ 54 in(CM) F,= 0.0 Ibs F,= 3.5 Ibs @ 40 in(CM) F,= 0.0 Ibs F2= 2.2 Ibs @ 26 in(CM) F2= 0.0 Ibs F,= 1.0 Ibs @ 12 in(CM) F1= 0,0 Ibs F.= 3.9 Ibs @ 60 in(CM) F„= 2.8 Ibs @ 60in(CM) If= 81.4 Ibs(@ Factored Loads) if,= 21,0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yf hl Calculate Overturning Moment(Service),MOT=Yflh; MOT= 4890 in-lbs MOT= 1663 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 13650 in-Ibs MRST= 3150 in-Ibs Factor of Safety Factor of Safety FOS=2.79 FOS=1.89 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads)' LC#1 LC#2 R,= 28 Ibs 7 Ibs Ry= 0 Ibs(No Uplift) 0 Ibs(No Uplift) Ic>tiT�AUE`uTEE.AI`ECN87R STRAP I V.,22GA lhk) Overturning FOS= 2192>=1.5 1,894>=1.5 r ' PLACE STRAP A:rC1ft?R$AT Sliding estraint force,R I FOS=1721bs 16+03>=1.5 OK 491bs/6.684>=1.5 OK jMAXt AT I FRAME ANC a ES, 9 RST E i""}✓lAxy AT INTER`OR FRAMES. C Reactions(Factored Loads): LC#1 LC#2 ^� Base Shear(Rj= 41 Ibs 10 Ibs its ANCraR aas.ts PER Net Uplift(Ry)= 0 Ibs 0 Ibs rNTERIOR FRAMES Overturning+Gravity(P„)= 1367 Ibs 321 Ibs Anchor Design(using"Cracked Concrete"Properties) Try 318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in f'p= 3500 psi a, = 0 in<-Eccen.Of Anchor In,f= 1.425 in 1.5(h,r)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for Capacity %= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs<--ACI 318-08 Eq D-20 Steel Strength(0.75)ON„= 10043 Ibs---ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�Vp,= 1001 Ibs c-ACI 318-08 Eq D-22 Concrete Breakout(0.75)�N,= 1517 Ibs c-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V ft= 703 Ibs<-ACI 318-08 Eq D-22 Pullout Strength(0.75)ONpa= 1252 Ibs< ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75M,N= 1597 Ibs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)#V.= 1634 Ibs< ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 41 Ibs 10 Ibs MIN[(pNsa,rpNcbg,(pNpnl/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<1,2 OK-LC#1(controls) USE: (2)3/8"0 Powers Wedge-Bolt+Screw Anchor 21/8"embed.ICC REPORT#ESR-2526 Wall-30YZ Wall Shelving/Single Sided a 84"Tall"W"5 Level 1403002901 zo 52 Northampton,MA-#2901 m�er IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04114/15 ��ev Punching Shear Check: H/2 X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P°)= 1177 lbs n ° <a-, N Slab Concrete f'°= 3500 psi Slab thickness(t)= 4 in. I. = Rack Post X-X= 2 in. Rack Post Y Y= 2 in. I <A °. r b°= 24.00 in. I °')i T- P= 1.00 V 22718 lbs Eq.(22-10) V°Max= 15107 lbs Eq.(22-10) L. °_°_____ _ oV°= 9064.38 lbs N::bo e. VAVn 0.130<1.0O.K. (punching Perimeter) OEAM rIXED AT ONE END,t"R[E TO DEFLECT VERTPCALLY 8111- NOT Slab tension based on Soil bearing area check: ROTATE AT OTHER--UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psf Max.vertical Load(Service)(P)- 788 lbs - t —� That Equal.Un Mom+LOS 9 Area reqd.for bearing(A„�)= 0.53 fe s}.-- + a.-V - n"Pp• 'b'distance= 8.70 in kC" 'gyp Slab thickness(t)= 4.00 in z -- an pia=. as n..a am S=(11")(t)/6- 2.67 in/in W.(tension allowable)=Q7.5)[(f'°)1d](S)= 710 in-lb/in , :I =. .� as, (at+«n.atae and - e • 5 Factored uniform bearing w„=P„)A„yb= 15 Ib/in/in ,.A- M, . . . . , . . M.=w.L'/3=(w„)[(b-(2"))12)2]/3= 58.14 in-lb/in-DeB.End M1=30 in-lb/in IVIAWt 2aEl = 0.082<1.0 O.K. a°m.,r i Tnen,.. n. - es Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: V Width of Single Rack= 15 in 1 Slab thickness(t)= 4.0 in j'Ii A,S;'S " Modulus of Rupture,f,=7,5'SQRT(rc)= 443.7 psi (' I I Concrete Slab Section Modulus,S=b(t)z/6= 32.0 in3/R Allowable Concrete Slab Bending Moment,Ma;,/FS=S'f,11.5= 1183.2 R'Ibs/R Effective Cantilever Span Length(L,)at M,I= 6.9 ft Total Length of Slab(L+Width of Single Rack)= 8.1 ft Tnb.Width of Slab=Tnb width of Rack= 8.0 ft -' Weight of Concrete Slab at Rack(P_)= 3252 lbs t,,is [.E Vi t J --" - -a Resisting Moment-Concrete Slab at Rack,M,,_)=P_ L�/2= 158616 in•lbs Load Combination#1: MOT= 3103in•lbs MRST(Ra ) + WST(—)= 166666 in'Ibs ` . ............. Total Overturning FOS= 53.783 OK Load Combination#2: MOT= 1577 in•lbs s M 25TIRk)+ M ST(sb)= 161616 in•Ibs Total Overturning FOS- 102.477 OK -- - Wall-24W Wall Shelving/Single Sided ­ 84"Tall"W"5 Level 1403002901 1s 52 ". Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No cox BY MAV 04114/15 Total Load per shelf= 150 lbs cnKKe er #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 16.75 psf/shelf Weight of Unit= 100# Rack anchorage spacing I Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 24 in Total Shelf Load/Level hs= 0 in h,= 0 in h7= 0 in hs= 0 in hs= 20 in 300 lbs h,= 19 in 300 lbs h3= 20 in 300 lbs h2= 19 in 300 Ibs h,= 6 in 300 Ibs --% -----:�..,,.. .,...._.,:.,..: %�._.. r.,..-..._.......:.: Total Shelf Height,Ht= 134 in Unit Height,H.= 84 in ' .. 1 Unit Base Depth,D= 15 in Load Case 1 (Load cases per RMI-t.2.6.6(1)) Load Case 2*(Load cases par RMI sect.2.6.9(2)) si Seismic(C,)(Ip)= 0.090 W. Seismic(C,)(Ip)= 0.090 Ws Total Wt,W,_(0.67)[0.67PL]+DL= 773 lbs Total Wt,W,_(0.67)[(1)PL]+DL= 301 lbs ':: `".-".._,,,•..•„_•••••••,.,"."`-_,••,.,., `-� .....^---.'_ Base Shear,V=Cj^= 69.3 lbs Base Shear,V=C,IpW,= 27.0 lbs Horizontal forces per level,F.=C„,V(RMI sect 2.6.6) Horizontal forces per level,F.=CV(RMI sect 26 6) . -_--- (Service Loads,E=0.7) Fa= 0.0 Ibs @ 0 in(CM) (Service Loads) Fs= 0.0 lbs Note: Fe= 0.0 lbs @ 0 in(CM) Fe= 0.0 lbs I (CM)=Product Center of Mass FT= 0.0 Ibs @ 0 in(CM) FT= 0.0 lbs .S ' typically 6 inches above Fs= 0.0 lbs @ 0 in(CM) FS= 00 lbs € the top of shelf at each level. Fs= 15.9 lbs @ 90 in(CM) F,= 16.3 lbs @ 90in(CM) � I °` F,= 12,4 Ilbs @ 70 in(CM) F,= 0.0 lbs .., F,= 9.0 lbs @ 51 in(CM) F3= 0.0 lbs F2= 5.5 Ibs @ 31 in(CM) F2= 0.0 lbs F,= 2.1 lbs @ 12 in(CM) F,= 0.0 lbs F°= 3.7 lbs @ 42 in(CM) F„= 2.5 Ibs @ 42in(CM) If;= 69.3 lbs(@ Factored Loads) If;= 27.0 lbs(@ Factored Loads) Calculate Overtuming Moment(Service),MOT=Tfh; Calculate Overturning Moment(Service),MOT=Yf;h, MOT= 3103 in-lbs MOT= 1577 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 8250 in-lbs MRST= 3000 in-lbs Factor of Safety Factor of Safety FOS=2.66 FOS=1.90 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 241bs 91bs d s' ,.LIGHT GAGE EEL ANCHOR R,= 0 lbs(No Uplift) 0 Ibs(No Uplift) STRAP W*r.22GA mt> Overturning FOS= 2.659>=L5 1.902-1.5 PLACE STRAP ANCHORS AT . EACH ENC,FRAME AND 9,0'01 Sliding Restraint force,RRST/FOS=1481bs/6.118>=1.5 OK 64lbs 1 6.771>=1.5 OK ;i fAxY AF niT£R.L}R FRAhtF..S. �s$} � TYP E UNO. Reactions(Factored Loads): LC#1 LC#2 01 Base Shear(R,)= 35 lbs 13 Ibs ss77 i2'E Art-."`,HbR 801.76 PER Net Uplift(Ry)= 0 lbs 0 lbs kNTERIOR.FRAMES Overturning+Gravity(P°)= 1177 Ibs 421 lbs Anchor Design(using"Cracked Concrete"Properties) i Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. •• ' Embedment= 2.125 in •- f'°= 3500 psi 1 r en'= 0 in<---Eccen.OfAnchor - hN= 1.425 in 1.5(h,t)=2,25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„- 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)mV„= 3303 lbs<--ACI 318-08 Eq D-20 Steel Strength(0.75)¢N„= 10043 lbs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)#V,�= 1001 lbs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)ON°Bp= 1517 lbs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V,W= 703 lbs<-ACI 318-08 Eq D-22 Pullout Strength(0.75)�Nm= 1252 lbs<-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�V,= 1597 lbs<-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OV°pv= 1634 Ibs< ACI 318-08 Eq D-31 Factored Tension Load(N°)= 0 lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V°)= 35 lbs 13 lbs MIN[tpNsa,TNcbg,cpNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<11 OK-1_C#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-24W Wall Shelving/Single Sided N. 78"Tall W"5 Level 1403002901 1s sz Northampton,MA-#2901 um.ar eae IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 1, X—X H (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(Pj= 1148 Ibs V, ° n N Slab Concrete ,= 3500 psi Slab thickness(t)= 4 in. I - • = Rack Post X-X= 2 in. Rack Post Y•Y= 2 in. b'= 24.00 in j (i= 1.00 I Vo= 22718 Ibs Eq.(22-10) V„max= 15107 Ibs Eq.(22-10) 14_ OV„= 9064.38 lbs �bo • a VJ Vn= 0.127<1.0O.K. (Punching Perimeter) REAM FIXED AT ONE END,FREE TO DEFLECT 'JERT?CALLY BUT NOT Allowable soil bearing 1500 psf Slab tension based On$Olt bearing area Ch ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD = Max.Vertical Load(Service)(P)= 776 Ibs a Area reqd.for bearing(A„o)- 0.52 fe �r t It*Ad Equi,uniform toad "b'distance= 8.64 in Slab thickness(t)= 4.00 in a v, S=(1")(t)'/6- 2.67 ins/in 0101M(tension allowable)=ij(7.5)[(f'J"](S)= 710 in-lb/in s k' I _Y Fs, (>t aenaetw end) a—' Factored uniform bearing,w„=P„I A„o= 15 Ib/inlin ; , Fos . . . . . . . . . . .4 M.=w L�/3=(w„)[(b-(2"))/2)z]/3= 56.51 in-lb/in-Deft.End Mt=29 in-lb/in Fa ..� 't �,.,,,:. s s•Fw.w.�.d i• MAKt= 0.080<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 15 in 3 Slab thickness(1)= 4.0 in - Modulus of Rupture,f,=7.5-SORT(rc)= 443.7 psi ]..�.) ! Concrete Slab Section Modulus,S=b(t)/6= 32.0 ins/ft Allowable Concrete Slab Bending Moment,M,'/FS=S•f,/15= 1183.2 ft'Ibslft Effective Cantilever Span Length(Lj at M,i= 6.9 ft Total Length of Slab(I�.Width of Single Rack)= 8.1 it r � 7 Trib-Width of Slab=Trib width of Rack= 6.0 It jj k 1 Weight of Concrete Slab at Rack(P_M)= 3252 Ibs €,,p;j, Resisting Moment•Concrete Slab at Rack,MR$T(.WEj=P_ Q2= 158616 in•lbs g i ¢r 6 A. Load Combination#1: MoT= 2901 in9bs _ 1�'--1 MRST(Rack) MRSrty.n/= 166866 in'Ibs Total Overturning FOS= 57.512 OK L{{ Load Combination#2: MoT= 1472 in'Ibs 7 MasrkR xl' MRSThrc>= 161616 in'Ibs Total Overtuming FOS= 109.797 OK i Wall-24V Wall Shelving/Single Sided "° 78"Tall W"5 Level 1403002901 17 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No -Y MAV 04114/15 Total Load per shelf= 150 Ibs 1ed By #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-051 2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 18.75 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 24 in Total Shelf Load/Level ha= 0 in h.= Din h,= 0 in hs= 0 in hs= 18 in 300 Ibs h,= 18 in 300 Ibs 111- - ....... ,.. hs= 18 in 300 Ibs h,= 18 in 300 Ibs hr= 6 in 300 Ibs ,„.,....- S,:_. Total Shelf Height,Hr= 78 in Unit Height,H°= 78 in Unit Base Depth,D= 15 in lj 1 r.._......m._...._,,.......,._..._._....w._.. y-._., Load Case 1'(Loatl cases per RMI sect.2.6.6(1)) Load Case 2'(Load cases per RMI sec[2.6.6(2)) Seismic(C,)(Ip)= 0.090 W. Seismic(C,)(Ip)= 0.090 W, Total Wt,W,_(0.67)[0.67PL)+DL= 773 Ibs Total Wt,W,_(0.67)[(1)PL]+DL= 301 Ibs `- - ......_.._.... - - '� Base Shear,V=C,I° ,= 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs Horizontal forces per level,F,=C„,V(RMI sect 2.6.6) Horizontal forces per level,F.=CV(RMI sect 2.6.6) .--------- C-- ---_ (Service Loads,E=0.7) Fe= 0.0 Ibs @ 0 in(CM) (Service Loads) Fs= 0.0 Ibs j Note: FS= 0.0 Ibs @ 0 in(CM) F8= 0.0 Ibs (CM)=Product Center of Mass FT= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs typically 6 inches above FS= 0.0 Ibs @ 0 in(CM) F,,= 0.0 Ibs the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) x°- F,= 12.3 Ibs @ 66 in(CM) F,= 0.0 Ibs FS= 9.0 Ibs 48 in(CM) Fs= 0.0 Ibs F2= 5.6 Ibs 30 in(CM) F,= 0.0 Ibs Fr= 2.2 Ibs @ 12 in(CM) Ft= 0.0 Ibs F„= 16 Ibs @ 39 in(CM) F„= 2.5 Ibs @ 39in(CM) If;= 69.3 Ibs(@ Factored Loads) If;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ifni Calculate Overturning Moment(Service),MOT=Ilih; Mor= 2901 in-Ibs Mot= 1472 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 8250 in-Ibs MRST= 3000 in-Ibs Factor of Safety Factor of Safety FOS=2.84 FOS=204 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads) LC#1 LC#2 R,= 24lbs 91bs Ry= 0 Ibs(No Uplift) 0 Ibs(No Uplift) IGHT (t',.E 9 EE;.AlvCC.lectu STRAP 1^w x 2 2rS.A rnA Overturning FOS= 2.843>=1.5 2.038>=1.5 ! i PUCE_STRAP ANCHORS AT '� EACH END FRAME AND 9'.0'oc Sliding Restraint force,RRST!FOS=1451bs 15.98>=1.5 OK 62lbs 16.585>=1.5 OK E (MAXp AT INTERIOR FRAMES, Reactions(Factored Loads)' LC#1 LC#2 � "4 13 Ibs Base Shear(Rj= 35 Ibs I F f2}AN.^.HOR EOI-TS PER Net Uplift(Ry)= 0 Ibs 0 Ibs '` ' STRAP A.tH,ERIOR FRAMES Overturning+Gravity(Pu)= 1148 Ibs 406 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Svew Anchor2 1/8 embed. ' [ _...._ -- Embedment= 2.125 in c e„= 350 0 n s<--Eccen.Of Anchor h,= 1.425 in 1.5(h,t)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity %= 3.5 in A.= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)¢V,p= 3303 Ibs<--ACI 318-08 Eq D-20 Steel Strength(0.75)#N„= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�Vicep= 1001 Ibs<--AC1318-08 Eq D-22 Concrete Breakout(0.75)0,,,.= 1517 Ibs o-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)OVpw= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)$Np„= 1252 Ibs<--AC1318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)#Vpsp= 1597 Ibs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)#V°pa= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TER)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(Vv)= 35 Ibs 13 Ibs MIN[tpNsa,cpNcbg,TNpnl/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035 c 1.2 OK-1-C#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-24V Wall Shelving/Single Sided ­N. 96"Tall"Y"9 Level 1403002901 16 52 P,.=N- Northam ton,MA-#2901 M.ce er o.N IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04114/15 Punching Shear Check: H/2 X—X H�2 (Design per section 22.5.4 ACI 316-08) Max.Factored Vertical Load(P.)= 1645 Ibs Slab Concrete f',= 3500 psi e° \ Slab thickness(t)= 4 in. Rack Post X-X= Z in. Rack Post Y-Y= 2 in. b.= 24.00 in. �- P- 1.00 V.= 22718ibs Eq.(22-10) I - N V„max= 15107 Ibs Eq.(22-10) _ _ pV„= 9064.38 lbs VAV,, 0.181 <1,0O.K. (Punching Perimeter) REAM FIXED AT ONE END, TREE TO DEFLECT VERTOCALLY BUT NOT Slab tension based On$OII bearing area Check: Allowable soil bearing 1500 psf NOTATE AT 0TffER--UNIFORMLY DIStRIEDTED LOAD ' = Max.vertical Load(Service)(P)= 1021 Ibs �. 1 - -- a Area reqd.for bearing(A,..a)- 0.68 t Tate E4aw ur,if—Load "b"distance= 9.90 in (ria A>v _wI a Slab thickness(t)- 4.00 in vs - S=(1")(t)2/6= 2.67 in3hn w. .(.th..d.mod) .. M (tension allowable)_oI(7.5)[(f'J ri](S) 710 in-lb/in 4 V 4+ Factored uniform bearing,w„=P„I No= 17 Ib/inln r __;,,; M.=w„L2/3=(w„)[(b-(2"))/2)�]/3= 87.30 in-lb/in-Deft.End Mt=44 in-lb/in k MjoMnt= 0.123<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in _ Slab thickness(t)= 4.0 in T Modulus of Rupture,f,=7.5•SQRT(rc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)'16= 32.0 ins /ft - Allowable Concrete Slab Bending Moment,M.4/FS=S•f,11.5= 11831 ft•lbs/ft Effective Cantilever Span Length(Lj at M.11= 6.9 it Total Length of Slab(4-Width of Single Rack)= 7.8 ft i L r Trib.Width of Slab=Trib width of Rack= 8.0 R tt i 4 W Z. eight of Concrete Slab at Rack(P�= 3118 Ibs (,Al€ €[._( S < J L _P • Resisting Moment-Concrete Slab at Rack,M,(_)-- ./2= 145876 in•lbs S { Load Combination#11: MDT= 3996 in•lbs :;NTH ( I 3 ;T MRSTfe.cq*MRSr(a.e)° 153026 in•Ibs _ . ...�.., ..._....... Total Overtuming FOS= 38.292 OK i '—n I Load Combination#2: MOT= 1346 in•lbs , Mgsgrt a+MnsT(>�1= 147526 in'Ibs Total Overturning FOS= 109.599 OK Wall-1 BY Wall Shelving/Single Sided "� "° a°e"" 96"Tall"Y"9 Level 1403002901 1s 52 p�Remr Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No -Y 4114/15 MAV 04I14l15 Total Load per shelf= 100 lbs By 0e1 #of Levels= Wall LEVEL IBC 2009/ASCE 7-05 If 2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 16.67 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level ha= 11.5 in 200 lbs ha= 11 in 200 lbs h,= 11.5 in 200 lbs ha= 11 in 200 lbs hs= 11.5 in 200 lbs h,= 11 in 200 lbs h,= 11.5 in 200lbs h2= 11 in 200 lbs hi= 6 in 200 lbs Total Shelf Height,Ht= 96 in i Unit Height,H.= 96 in w x Unit Base Depth,D= 11 in is Ij Load Case 1 (Load cases per RMI se t.2s 8(l)) Load Case 2*(Load cases ptt RMI sect.2.6.812)) t' 3 Seismic(C,)(I,)= 0.090 W, Seismic(C j(lp)= 0.090 W, _- Total Wt,W,_(0.67)[0.67PL]+DL= 908 lbs Total Wt,W,_(0.67)[(1)PL]+DL= 234 lbs s }. Base Shear,V=C,l^= 81.4 lbs Base Shear,V=C,IpW,= 21.0 lbs Horizontal forces per level,F.=CV(RMI sect 2.6.6) Horizontal forces per level,F,=C.,,V(RMI sect Zee) ' -. -----m- -` - (Service Loads,E=0.7) Fa= 10.6 lbs @ 102 in(CM) (Service Loads) Fa= 11.9 Ibs @ 102in(CM) Note: Fa= 9.4 lbs @ 90.5 in(CM) Fa= 0.0 lbs (CM)=Product Center of Mass FT= 8.3 lbs @ 79.5 in(CM) F,= 0.0 lbs typically 6 inches above Fs= 7.1 lbs @ 68 in(CM) Fs= 0.0 lbs the top of shelf at each level. F5= 5.9 Ilbs @ 57 in(CM) Fs= 0.0 lbs F,= 4.7 lbs @ 45.5 in(CM) Fa= 0.0 lbs F,= 3.6 lbs @ 34.5 in(CM) F,= 0.0 lbs F2= 2.4 lbs @ 23 in(CM) F2= 0.0 lbs Ft= 1.2 lbs @ 12 in(CM) Ft= 0.0 lbs F„= 3.7 lbs @ 48 in(CM) F„= 2.8 lbs @ 48in(CM) Yfl= 81.4 lbs(@ Factored Loads) Yf!= 21.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yf;hl Calculate Overturning Moment(Service),MOT=Yf h; MOT= 3996 in-lbs MOT= 1346 in-lbs Calculate Resisting Moment(Service),MRs, Calculate Resisting Moment(Service),MRST MRST= 7150 in-lbs MRST= 1650 in-lbs Factor of Safety Factor of Safety FOS=1.79 FOS=1.23 ,1€'i.€f•...Ahirut3?5 REC3:'1F?,:f, 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 , R,= 28 lbs 7 Ibs , Ry= 0 lbs(No Uplift) 0 lbs(No Uplift) -TIGHT GAip:E STEEL.AxCHCTR STRAP,V­22GA ftr Overturning FOS= 1.789-L5 1.226<1.5 ASS Reqd / aU.0 STRAP A,� Hl7R5 AT 1: EACH CeI.0 FRAM£AND B'ob Sliding Restraint force,RRST/FOS=2041bs/7.175>=1.5 OK 601bs 18.155>=1.5 OK jl...-I ). (tux)AT INTERIOR FRAMES, vPe No Reactions(Factored Loads)' LC#1 LC#2 Base Shear(Rj= 41 lbs 10 lbs - i2}ANCHOR ea is PER Net Uplift(Ry)= G Ibs 0 lbs �- -< 1 S'Rnc a?INTERIOR FRAMES Overturning+Gravity(P„)= 1645 lbs 413 lbs C Anchor Design(using"Cracked Concrete"Properties) Try:3/8"ro Powers Wedge-Bolt+Screw Anchor 2 1/8 embed. _ .�..._ Embedment= 2.125 in f'c= 3500 psi e,;= 0 in<---Eccen.Of Anchor h,= 1.425 in 1.5(h,l)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 lbs<-ACI 318.08 Eq D-20 Steel Strength(0.75)�N„= 10043 lbs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�V,ea= 1001 lbs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)�N,ea= 1517 lbs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)mVicea= 703 lbs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)�N,= 1252 lbs;<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(035)t V,,,a= 1597 lbs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)�Vppa= 1634 lbs<--AC1318-08 Eq D-31 Factored Tension Load(N„)= D lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 41 lbs 10 lbs MIN[IpNsa,TNcbg,cpNpn]/Nu= 99.99>2.5-OK-IBC ICBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<11 OK-LC#1(controls) USE: (2)3/8"0 Powers Wedge-Bolt+Screw Anchor 21/8"embed. ICC REPORT#ESR-2526 Wall-18Y Wall Shelving/Single Sided — z NO a 84"Tall"W"5 Level 1403002901 14 52 Northam ton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/L X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1337 lbs `- --c- --- N Slab Concrete f',= 3500 psi Slab thickness(t)= 4 in. ° = Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. b°= 24.00 in. °'j }- 0= 1.00 �° V"= 22718 lbs Eq.(22-10) V,max 15107 lbs Eq.(22-10) +V„= 9064.38 lbs �ba VAV„= 0.148<1.00.K. (Punching Perimeter) 1 REAM FIXED AT ONE FND, tREE TO DEFLECT VERTICALLY BUT NOT Slab tension based on Soil bearing area check: Allowable soil bearing 150D psf --RDIAIE AT OTHERTINIFoRMLY VISFRIEUTED LOAD = Max.vertical Load(Service)(P)- 844 lbs t Area reqd.for bearing(A_d)= 0.56 ftz ! t Tatar Fauw,u.it—loan b"distance= 9.00 in R Slab thickness(t)= 4.00 in v,„ ., - - - -m S=(1")(t)'/6- 2.67 in'/in W.(tension allowable)=04(7.5)[(f'J"](S)= 710 in-lb/in Factored uniform bearing,w„=P„!A„w= 16 Ib/in(in ; '] Rix f --3aai M.=w„1-2/3=(w„)[(b-(2"))/2)z]/3= 67.42 in-lb/in-Defl.End M1=34 in-lb/in ra., ae MAMRt= 0.095<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in Slab thickness(1)= 4.0 in Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)z16= 32.0 ins /ft f Allowable Concrete Slab Bending Moment,Mu/FS=S'f,/1.5= 11831 ft`lbs/fl Effective Cantilever Span Length(Lj at M,ii= 6.9 ft _ 1 Total Length of Slab(1,+Width of Single Rack)= 7.8 It r:O Tnb.Width of Slab=Trib width of Rack= 8.0 It P Lt Weight of Concrete Slab at Rack(P_)= 3118 lbs .,Y{v ',t t Resisting Moment-Concrete Slab at Rack,MRsrkuset=P� L�12= 145876 in'Ibs - q, 1] i { Load Combination#1: MoT= 3103 in'Ibs MRST(—k)*MRSTIweI= 151926 in`lbs Total Overturning FOS= 48.968 OK Load Combination#2: MOT= 1577 in'Ibs I ~` t MRSi1rsMx1 MRSrk,iwl= 148076 in`lbs Total Overturning FOS= 93.891 OK — _ v- Wall-18W Wall Shelving/Single Sided a 84"Tall"W"5 Level 1403002901 13 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No -.1 MAV 04/14/15 Total Load per shelf= 150 Ibs O1e1°ar #of Levels= Wall LEVEL IBC 2009/ASCE 7-05 If 2008 RMI (ANSUMH16 1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Rack anchorage spacing I Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level h9= 0 in ha= Din h,= 0 in h6= 0 in h5= 20 in 300 Ibs he= 19 in 300 Ibs �}t ....... ..m..a✓.. � i._pC.. h,= 20 in 300 Ibs - hz= 19 in 300 Ibs _ h,= 6 in 300 Ibs - ;�.-,.,--....,.. .......... .......... `t_._._ ....c.- Total Shelf Height,H,= 34 in ; Unit Height,Hu= 84 in Unit Base Depth,D= 11 in Load Case 1•(LOatl cases per RMI sect 2.6.8(1)) Load Case 2'(Load cases per RMI sect 2.6.8(2)) € Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(Ip)= 0.090 W, Total Wt,W,_(0.67)[0.67PL]+DL= 773 Ibs Total Wt,W,_(0.67%1)P1_]+D1_= 301 Ibs Base Shear,V=C,IpW,= 69.3 Ibs Base Shear,V=C,IRW,= 27.0 Ibs Horizontal forces per level,F.=CV(RMI sect 2.6.6) Horizontal forces per level,F.=CV(RMI seo12 e6) .--�, (Service Loads,E=0.7) Fe= 0.0 Ibs @ 0 in(CM) (Service Loads) Fe= 0.0 Ibsi Note: Fs= 0.0 Ibs @ 0 in(CM) Fa= 0.0 Ibs ._. (CM)=Product Center of Mass F 7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs typically 6 inches above F5= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs ..} ,.,,. the top of shelf at each level. F5= 15.9 IDs @ 90 in(CM) F,= 16.3 Ibs @ 90in(CM) "' -- F,= 12.4 Ibs @ 70 in(CM) Fa= 0.0 Ibs F,= 9.0 Ibs @ 51 in(CM) F,= 0.0 Ibs F2= 5.5 Ibs @ 31 in(CM) F,= 0.0 Ibs F,= 2.1 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 33 Ibs @ 42 in(CM) F„= 2.5 Ibs @ 42in(CM) if,= 69.3 Ibs(@ Factored Loads) If;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),MOT=Ef;h; Mor= 3103 in-Ibs Mor= 1577 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-Ibs MRST= 2200 in-Ibs Factor of Safety Factor of Safety FOS=1.95 FOS=1.39 RE:Q:33RC is 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads)' LC#1 LC#2 R,= 241bs 9lbs LIGHT GAGE STEEL AW_.0R Rr= 0lbs(No Uplift) 0 Ibs(No Uplift) I�t. STRAP0"° ZMA114. Overturning FOS= 1.950-1.5 1.395<1.5 ABs Reqd i Fu0 STRAP AM.CNORS At EACH ENO FRAME AND a'-0'- Sliding Restraint force,RRST I FOS=167lbs/6.893>=1,5 OK 731bs 1 7.783-1.5 OK .. f ', L t?d«4xt AT INTER ,R FRAMtE6. ^..4 TYP+UNO Reactions(Factored Loads): LC#1 LC#2 [ k Base Shear(R,J= 35 Ibs 13 Ibs .� ' �z i21 AN HOR ear IS EVER Net Uplift(Ry)= 0 Ibs 0 Ibs ":_ STRAP AT INTERIOR FRAMES Overturning+Gravity(P°)= 1337lbs 503lbs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"O Powers Wedge-Bolt+Screw Anchor2 1/8 embed. 3 Embedment= 2.125 in f'°° 3500 psi I, a.. 0 in----Eccen.Of Anchor IT,= 1.425 in 1.5(h,,)=2.25 in Conc.thickness,t= 4 in If of Anchors,n= 2-anchors per connection used for capacity %= 3.5 in A_- 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V,e= 3303 Ibs c--ACI 318-08 Eq D-20 Steel Strength(0.75)r N„= 10043 Ibs o-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)bV,= 1001 Ibs<_ACI 318-08 Eq D-22 Concrete Breakout(0.75)ON,b.= 1517 Ibs---ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V°ba= 703 Ibs o--ACI 318-08 Eq D-22 Pullout Strength(0.75),l,Np„= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)r Vpp= 1597 Ibs c ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)dV_= 1634 Ibs c_ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V°)= 35 Ibs 13 Ibs MIN[IpNsa,tpNcbg,cpNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-1_C#1(controls) USE:(2)3/8"0 Powers Wedge-Bolt+Screw Anchor 21/8"embed.ICC REPORT#ESR-2526 Wall-18W Wall Shelving/Single Sided = , 78"Tall"V"5 Level 1403002901 1 121� 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04114/15 Punching Shear Check: H/2 X—X H/2 (Design per section 22.5.4 ACI 318-08) Max-Factored Vertical Load(P„)= 1298 lbs Slab Concrete f',= 3500 psi I, Slab thickness(t)= 4 in I = Rack Post X-X= 2 in Rack Post Y-Y= 2 in. I e° bo= 24.00 in. p= 1.00 I V°= 22718 ibs Eq.(22-10) I - - I N V,Max 15107 lbs Eq.(22-10) L_ . 1 _—$__—__ 1 _ ov„= 9064.38 lbs �bo s c VAV"= 0.143<1.0 O.K. (Punching Perimeter) FIXED AT ONE END, FREE TO DEFLECT YERT;CALLY BUT NOT REAM FI Slab tension based On$OII bearing area Check: ROSAli AT OT)ILR--UNIFORMLY D15'FRIEUTED LOAD Allowable soil bearing= 1500 psi Max.Vertical Load(Service)(P)= 830 lbs Area reqd.for bearing(A„d)= 0.55 _. Eq'i,•,U'if*�Loan - "b"distance= 8.93 in [f ---r�F R Yx Slab thickness(t)= C00 in S=(1,.)(t)2/6= 2.67 in/in —. +a�:am.{>L n.m e"e> . . . . . MM tension allowable 7.5 f'j S = 710 in-lb/in Factored uniform bearing,w„=P„I A„,,= 16 Iblinlin M.=w.L2/3=(w.)[(b-(2"))12)2]/3= 65.14 in-lb/in-Defl.End M1=33 in-lb/in M..._l.i.�.�'�._, MAW,= 0.092<1.0 O.K. ` zcr Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in Slab thickness(t)- 4.0 in `,r Modulus of Rupture,f,=7.5*5'SQRQRT(Pc)= 443.7 psi — ) Concrete Slab Section Modulus,S=b(QZ/6= 32.0 in' /R Allowable Concrete Slab Bending Moment,M,,/FS=S-f,/1.5= 1183.2 R'Ibs/R Effective Cantilever Span Length(I-j at M,i= 6.9 It .F Total Length of Slab(1,+Width of Single Rack)= 7.8 ft Trib.Width of Slab=Trib width of Rack= 8.0 R r={ �',`-- '. _ _ j i s;_; Weight of Concrete Slab at Rack(P.)= 3118 lbs Resisting Moment-Concrete Slab at Rack,WST(U,b)=P_`L"12= 145876 in'Ibs r-t -- Load Combination#1: Mot= 2901 in'lbs (�'-H ' Mesrtrt xl * Mesrnmbl= 151926 in9bs I .._._ ` Total Overturning FOS= 52.363 OK Load Combination#2: MOT= 1472 in'Ibs M RT(Rt)+ M RST(Y) 148076 in'Ibs Total Overturning FOS= 100.598 OK Wall-18v Wall Shelving/Single Sided No sem No 78"Tall W"5 Level 1403002901 J" 52 Name Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y IN): No weer o>k MAV 04/14/15 Total Load per shelf= 150 Ibs cne<ree By oeu #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25,00 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Tnb width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level hs= 0 in ha= Din hr= Din h6= 0 i hs= 18 in 300 Ibs h9= 18 in 300 Ibs "-" •, h3= 18 in 300 Ibs h2= 18 in 300 Ibs IT,= 6 in 300 Ibs Total Shelf Height,H,= 78 in Unit Height,H„= 78 in Unit Base Depth,O= 11 in Load Case 1*(Load cases per RMI sect.2.6.8(1)) Load Case 2' (load cases per RMI sec[.2.6 8(2)) Seismic(C,)(IP)= 0.090 W. Seismic(C,)(IP)= 0.090 W. Total Wt,W,_(0.67 0.67P1-+DL= 773 Ibs Total Wt,W,= 0 87 1 PL+OL= 301 Ibs Base Shear,V=CsI^= 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs Horizontal forces per level,F.=Ca,V(RMI sect 2.6.6) Horizontal forces per level,F.=C„,V(RMI seee 26.6) ___ - (Service Loads,E=0.7) Fs= 0.0 Ibs @ 0 in(CM) (Service Loads) Fs= 0.0 Ibs Note: Fs= 0.0 Ibs @ 0 in(CM) Fa= 0.0 tbs II (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) Fr= 0.0 Ibs typically 6 inches above Fs= 0.0 Ibs @0in(CM) Fs= 0.0 Ibs the top of shelf at each level. F5= 15.7 Ibs @ 84 in(CM) F5= 16.3 Ibs @ 84in(CM) Fq= 12.3 Ibs @ 66 in(CM) F.= 0.0 Ibs F,= 9.0 Ibs @ 48 in(CM) F3= 0.0 Ibs Fz= 5.6 Ibs @ 30 in(CM) F,= 0.0 Ibs F,= 2.2 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.6 Ibs @ 39 in(CM) F.= 2.5 Ibs @ 39in(Chl) If;= 69.3 Ibs(@ Factored Loads) If= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),Mot=If;h; MOT= 2901 in-Ibs MOT= 1472 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-Ibs MRST= 2200 in-Ibs Factor of Safety Factor of Safety FOS=2.09 FOS=1.49 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 Ibs 9 Ibs Ry= 0 Ibs(No Uplift) 0 Ibs(No Uplift) .IGHT GAUreE 5 EEL APr%H+3+1 STRA Overturning FOS= 2.085>=1.5 1.495<1.5 ABS Regtl ?�.' PLACE 1'.STRAP;1'. 22.aA Oki A14CH6.RS AT Sliding Restraint force,RRST/FOS=1631bs/6.705>=1.5 OK 711bs/7.53>=1.5 OK - _a..a EN,^e FRAME AND a-o'a t�AXi AT INTERIOR FRAMES. Reactions(Factored Loads): LC#1 LC#2 xis 1-; Base Shear(Rj= 35 Ibs 13 Ibs ( ` Net Uplift(Ry)= 0 Ibs 0 Ibs ROLT3 PFR AT INTERIOR FRAMES Overturning+Gravity(P„)= 1298 Ibs 482 Ibs Anchor Design(using"Cracked Concrete"Properties) t Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. •r Embedment= 2.125 in 3500 psi ,. a., 0 in o--Eccen.Of Anchor ha= 1.425 in 1.5(h,)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A.= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)OV„= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75),iN„= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir(0.75)OV.,= 1001 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)0N,bii= 1517 Ibs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)0V�,,= 703 Ibs<-ACI 318-08 Eq D-22 Pullout Strength(0.75)�N.= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)pV,N= 1597 Ibs-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OV,,= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(Va)= 35 Ibis 13 Ibs MINI(pNsa,(pNcbg,(pNpn)/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE:(2)3/8"0 Powers Wedge-Bolt+Screw Anchor 21/8"embed.ICC REPORT#ESR-2526 Wall-18V Wall Shelving/Single Sided „oRo 66"Tall"Ll"5 Level 1403002901 10 a 52 Northampton,MA-#2901 wce e. om IBC 2009/ASCE 7-0512008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 X—X H/2 By (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1218 lbs N Slab Concrete f',= 3500 psi i. - a Slab thickness(t)= 4 in. I. 2 Rack Post X-X= 2 in. 1 Rack Post Y-Y= 2 in. 24.00 in. (i= 1.00 1 _ V�= 22718 lbs Eq.(22-10) 1 - - i N V,max 15107 lbs Eq.(22-10) 0„= 9064.38 lbs VAVR= 0.134<1.0 O.K. (Puneching Perimeter) REAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based On SOII beating area Check: Allowable soil bearing 1500 psf ROTATE AT O1->1ER-UNIFORMLY D15TRI8UTED LOAD = Max.Vertical Load(Service)(P)= 802 lbs �, t Area reqd.for bearing(A„d)- 0.53 fts ' + ce`^` TOM Equi,uo;rnrm Law "b"distance= 8.78 inu,y M1 Slab thickness(t)= 4.00 in rt va _ - -u S=(1")(t)z/6= 2.67 in"hn i M�,aa.�as n.°e<"a} 0MM(tension allowable)=44(7.5)[(f'�)"](S)= 710 in-lb/in `' I, - i `� (a4 avMCiN a.+tl) 6* Factored uniform bearing,w„=P„/A,.0= 16 Ibrinrin Y I M* M.=w„Lz/3=(w)[(b-(2"))/2)z]/3= 60.50 in-lb/in-Dell.End M1=31 in-lb/in � MAW= 0.085<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)z/6= 32.0 ins/ft Allowable Concrete Slab Bending Moment,Mu/FS=S'f,/1 5= 1183.2 ft'Ibs/ft Effective Cantilever Span Length(L,)at MNi= 6.9 ft Total Length of Slab(1,<Width of Single Rack)= 7.8 ft - { s , t Trib.Width of Slab=Trib width of Rack= 8,0 ft Weight of Concrete Slab at Rack(P )= 3118 lbs t,, r ( C € i t I__ Resisting Moment-Concrete Slab at Rack,WsT(u,b)=P_ L./2= 145876 in'Ibs Load Combination#11: MoT= 2488Wlbs l pp y MRST(R—)<MRST(sub)= 151926 in'Ibs -� I Total Overturning FOS= 61.075 OK Load Combination#2: MOT= 1262 in'Ibs , WST(—)<MRSTI—j= 148076 in'lbs Total Overtuming FOS= 117.363 OK — - Wall-18U Wall Shelving/Single Sided p,q�NO 5 No 66"Tall"Ll"5 Level 1403002901 s 52 Prgevi Name Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No wa By one MAV 04114/15 Total Load per shelf= 150 lbs By cee #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psflshelf Weight of Unit= 100# Rack anchorage spacing I Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level ha= 0 in hs= 0 in hT= 0 in hs= 0 in hs= 15 in 300 lbs `% h.= 15 in 300 Ibs - hs= 15 in 300 lbs hz= 15 in 300 lbs hl= 6 in 300 Ibs .-.--. Total Shelf Height,H,= 66 in Unit Height,H.= 66 in Unit Base Depth,D= 11 in Load Case/•(Load oas ` es per RMI sect.2 6.6(1)) Load Case 2•(Load cases per RMI sect 2 6.6(2)) Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(Ip)= 0,090 W, Total Wt,W,_(0.67)[0.67PL]+DL= 773 lbs Total Wt,W,_(0.67)[(1)PL]+DL= 301 lbs Base Shear,V=C,IpW,= 69.3 lbs Base Shear,V=Cj,,W,= 27.0 lbs j Horizontal forces per level,F.=CKV(RMI sect 2.6.6) Horizontal forces per level,F.=C„V(RMI sec+2.6.6) „ (Service Loads,E=0.7) Fs= 0.0 lbs @ 0 in(CM) (Service Loads) Fa= 0.0 lbs SSS Note: Fe= 0.0(bs @ 0 in(CM) Fs= 0.0 lbs (CM)=Product Center of Mass F7= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs a typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs II the top of shelf at each level. Fs= 15.4 lbs @ 72 in(CM) FS= 16.4 Ibs @ 72in(CM) ,y .., 'e, Fa= 12.2 Ibs @ 57 in(CM) Fa= 0.0 lbs F,= 9.0 lbs @ 42 in(CM) F,= 0.0 lbs F2= 5.8 lbs @ 27 in(CM) Fz= 0.0 lbs F,= 2.6 lbs @ 12 in(CM) F,= 0.0 lbs F„= 3.5 Ibs @ 33 in(CM) F„= 2.5 lbs @ 33in(Ckt) if,= 69.3 lbs(@ Factored Loads) if,= 27.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MDT=Ef,h, Calculate Overturning Moment(Service),MDT=Yf,h, MoT= 2488 in-Ibs M,= 1262 in-lbs Calculate Resisting Moment(Service),MRsT Calculate Resisting Moment(Service),MRsT MRsT= 6050 in-lbs MRsT= 2200 in-lbs Factor of Safety Factor of Safety FOS=2.43 FOS=1.74 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 lbs 9 Ibs R,= 0 lbs(No Uplift) 0 lbs(No Uplift) _ is~T<,AIGE s E .ANc,�R STRAR rI wr 2'3A.tnM1 Overturning FOS= 2.432>=1.5 1.744>=1.5 PLACE STRAP A,, I♦D+ts AT Sliding Restraint force,RRST/FOS=153lbs/6.317>=1.5 OK 66lbs/Z024-1.5 OK ! -i SA CH END FRAME ANC 8.0'- 1 #^AXI AT INTERIOR FRAME'S TYF l LkNa Reactions(Factored Loads): LC#1 LC 42 Base Shear(R,J= 35 lbs 13 lbs i z t2, 4OR c - S PER Net Uplift(R,)= 0lbs 0lbs RA.LNF" hRTERIOR FRAMES Overturning �., Gravity(P„)= 1218 Ibs 442 Ibs -- Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 21/8"embed. r j Embedment= 2.125 in �- f'r= 3500 psi e�= D in<---Eccen.Of Anchor h„= 1,425 in 1.5(h,r)=2.25 in Conc.thickness,1= 4 in #of Anchors,n= 2-anchors per connection used for capacity S,= 3.5 in A.= 0.103 In' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 lbs<-ACI 318-08 Eq D-20 Steel Strength(0.75)ON„= 10043 lbs-ACI 318-08 Eq D-3 Concrete breakout Y dir,(0.75)¢V ft= 1001 lbs o--ACI 318-08 Eq D-22 Concrete Breakout(0.75)�N,sg= 1517 lbs< ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)OV�N= 703 lbs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)$N,= 1252 lbs---ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)OV,N= 1597 lbs c-AC1318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)�Vepo= 1634 lbs< ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs 0 lbs LC#1 LC 92 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V j= 35 lbs 13 lbs MIN[IpNsa,gNcbg,gNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1906.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035-1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-18U Wall Shelving/Single Sided o N° 60"Tall'T"5 Level 1403002901 8 D 52 Northampton,MA-92901 ace er Dm IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 X—X H/2 By (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1178 Ibs Slab Concrete f',= 3500 psi Slab thickness(t)= 4 in _- Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. I ° b°= 24.00 in I ° > P= 1.00 1 N V�= 22718 lbs Eq.(22-10) I Q. .a \ V„max= 15107 Ibs Eq.(22-10) mvn= 9064.38 lbs bC • e. VAV� 0.130<1.0 O.K. (Punching Perimeter) REAM FIXER O AT (iNE ENO, FREE T DEFLECT VERTICALLY B11T NOT Slab tension based On Soil bearing area check: Allowable soil bearing 1500 psi F01ATE AT OTHER-.UNIFORMLY DISTRIBUTED LOAD = Max.Vertical Load(Service)(P)= 788 Ibs I Area reqd.for bearing(A,,,p)- 0.53 f� TdS"I E4ow.U�aorm Low "b"distance= 8.70 in Slab thickness(t)= 4.00 in S=rxt)'16= 2.67 in'/in m..:a:.�.c n..d,nd) OMM(tension allowable)=$t(7.5)[(f-j"](S)= 710 in-lb/in Factored uniform bearing, =P,I = I` ° g, Aaae- 16 IbliNin M„=w.L213=(w„)[(b-(2"))/2))13= 5812 in-lb/in-Defl.End MI=30 in-lb/in .•s r e MAW,= 0.082<1.0 O.K. M FsEI•'. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in / Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5`SQRT(fc)- 443.7 psi ) 1 Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in°/ft Allowable Concrete Slab Bending Moment,M.,/FS=S•f,/1.5= 1183.2 ft'Ibs/ft Effective Cantilever Span Length(L°)at M„i= 6.9 it ] Total Length of Slab(I,*Width of Single Rack)= 7.8 ft Trib.Width of Slab=Trib width of Rack= 8.0 ft L >_ i I Weight of Concrete Slab at Rack(P_j= 3118 Ibs /,f...,I I Resisting Moment-Concrete Slab at Rack,MRSTt,ebl=P_•L./2= 145876 in'Ibs Load Combination#1: MoT= 2282 in•lbs MRSr(R><a) * MRSrIyebl= 151926 in'Ib5 i Total Overturning FOS= 66.583 OK I Load Combination#2: MDT= 1157 in'Ibs s MRST(Rj*MRSTIwbi= 148076 in'1bs Total Overturning FOS= 128.030 OK Wall-18T Wall Shelving/Single Sided oNe a 60"Tall'T"5 Level 1403002901 7 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No ac.By oak MAV 04114115 Total Load per shelf= 150 Ibs #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weightof Unit= 100# Rack anchorage spacing/Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level h,,= 0 in h,,= 0 in hr= 0 in h6= 0 i h,= 13.5 in 300 Ibs h,= 13.5 in 300 Ibs �..#- h3= 13.5 in 300 Ibs h2= 115 in 300 Ibs ht= bin 300lbs .-..,.. Total Shelf Height,Ht= 60 in Unit Height,H„= 60 in j Unit Base Depth,D= 11 in 1 Load Case 1 a(Load cases par RMI sect.2.6.8(1)) Load Case 2' (Load cases par RMI sect.2.6 8(2)) Seismic(C,)(Ip)= a090 W, Seismic(Cs)(I,)= 0.090 W, ! Total Wt,W,_(0.67)[0.67PL]+DL= 773 Ibs Total Wt,W,_(0 67)[(1)PL]+DL= 301 Ibs Base Shear,V=C,I,,W,= 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs 3 Horizontal forces per level,F.=Cr,V(RMI sect 2.6.6) Horizontal forces per level,F.=C,,,V(RMI sea 2.6.6) (Service Loads,E=0.7) FB= 0.0 Ibs @ 0 in(CM) (Service Loads) FB= 0.0 Ibs Note: Fa= 0,0 Ibs @ 0 in(CM) Fa= 0.0 Ibs (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F7= 0.0 Ibs 1� typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs ` mm the top of shelf at each level. Fs= 15.2 Ibs @ 66 in(CM) Fs= 16.4 lbs @ 66in(CM) .., .. Fa= 121 Ibs @ 52.5 in(CM) Fa= 0.0 Ibs F3= 9.0 Ibs @ 39 in(CM) F3= 0.0 Ibs F2= 5.9 Ibs @ 25.5 in(CM) F2= 0.0 Ibs Ft= 2.8 Ibs @ 12 in(CM) Ft= 0.0 Ibs F„= 3.4 Ibs @ 30 in(CM) F„= 2.5 lbs @ 30in(CM) If;= 69.3 Ibs(@ Factored Loads) If;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yf;h; Calculate Overturning Moment(Service),MOT=7fh, MOT= 2282 in-Ibs MOT= 1157 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-Ibs MRST= 2200 in-Ibs Factor of Safety Factor of Safety FOS=2.65 FOS=1.90 *Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 lbs 9 Ibs R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) I --.iGHr GAUGE 5 CTRAP it^ri r 22f3A t k, Overturning FOS= 2.651>=1.5 1.902-1.5 3 PLACE STRAP A4,.HJ S AT I Sliding Restraint force,RR6T/FOS=1491bs/6.124>=1.5 OK 641bs 16,771>=1.5 OK EACH END FRAAE A?C 8'..^,"O. h .MAX}AT RaTSR CR FRAh4FS. Reactions(Factored Loads): LC#1 LC#2 Base Shear(R,J= 35 Ibs 13 Ibs Net Uplift(R)= 0 Ibs 0 Ibs g)ANC ERIOR FRAMES Overturning+Gravity(Pa)= 1178 Ibs 421 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Boll+Screw Anchor 2 1/8"embed. - Embedment= 2.125 in VC= 3500 psi = 0 in<-_Eccen.Of Anchor h�= 1.425 in 1.5(hat)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for rapacity Sx= 3.5 in A.= 0.103 in' Shear Allowables Tension Allowable s Steel Strength(0.75)�V,a= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75)ON„= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)ov�y= 1001 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)tpN,b.= 1517 Ibs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)OV,,= 703 Ibs o--ACI 318-08 Eq D-22 Pullout Strength(0.75),t,Nm= 1252 Ibs<-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�V,N= 1597 Ibs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)itV,= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(Na)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(Va)= 35 Ibs 13 Ibs MIN[IpNsa,lpNcbg,cpNpn]/Nu= 99.99>2.5-OK-IBC!CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-18T Wall Shelving/Single Sided s "o 54"Tall"S"5 Level 1403002901 6 52 Northampton,MA-#2901 aae Br "aie IBC 2009/ASCE 7-05 1112008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1138 lbs Slab Concrete f',= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. b,= 24.00 in. ° j Y p= 1.00 Vn= 22718 lbs Eq.(22-10) I N Vn max= 15107 lbs Eq.(22-110) ?_____ S 0n= 9064.38 lbs bC e y<}yn= 0.126<1.0 O.K. (Punching Perimeter) REAM rix ED AT 0111 END, TREE TO DEFUC1 VERTICALLY 801' NOT Slab tension based On Soil bearing area Check: Allowable soil bearing 1500 psf ROTATE AT OTIiER--L3NIFOR1ALY DISTRIBUTED LOAD = Max.Vertical Load(Service)(P)= 774 lbs h-.-.....--I...-......._.., Area recd.for bearing(A„�)= 0.52 .r tmm Equiv.OnrtwM low _ ...< "b"distance= 8.62 in Slab thickness(t)= 4.00 in M n„z, at AzeA enq S-(,)(t)2/6= 2.67 in'!n s 0MM(tension allowable)=Q7.5)[(f'�)"](S)= 710 in-lbfin 4 -.y` � E i V nt, (-I dl­..,a) Factored uniform bearing,w„=P„I A„4= 15 IbAnlin sty c . . A t 3z'i M.=w„L'/3=(w„)[(b-(2"))/2)z]/3= 55.95 in-lb/in-Deft End M1=28 in-lb/in - I� , , .< m+.. (at esna4am enn} MJ$Mnt= 0.079<1.0 O.K. V...3. 2tEtv�..... Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in ; Slab thickness(t)= 4.0 in 3 Modulus of Rupture,f,=7.5'SaRT(rc)= 443.7 psi } — Concrete Slab Section Modulus,S=b(t)2/6- 32.0 in'/ft Allowable Concrete Slab Bending Moment,MvfFS=S'fl1.5= 1183.2 ft'Ibs/ft ---•'..M r"'"- --- Effective Cantilever Span Length(L,)at M,x= 6.9 ft ((I Total Length of Slab(1,-Width of Single Rack)= 7.8 R Trib.Width of Slab=Trib width of Rack= 8.0 R 11 p Weight of Concrete Slab at Rack(P,_)= 3118 lbs Resisting Moment-Concrete Slab at Rack,MasTl,snl=P_•L�2= 145876 in'9bs — Load Combination#1: Mor= 2077 Whit 1 ;�'' f f J k'1nsr(Rvc4) k'lasr(we)= 151926 in'Ibs - Tota]Overturning FOS= 73.149 OK Load Combination#2: MOT= 1051 in'9bs k'insrt­>' INasrt�)° 148076 in•lbs _. Total Overturning FOS= 140.828 OK t_.. Wall-18S Wall Shelving/Single Sided 54"Tall"S"5 Level 1403002901 s 52 p,aec,N "am. orthampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No By Osre MAV 04114/15 Total Load per shelf= 150 Ibs c""'�By #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 ft(Frames are assumed to be 4=0"oc) Shelf depth= 18 in Total Shelf Load/Level hS= 0 in ha= 0 in hT= 0 in Ins= 0 in hs= 12 in 300 Ibs -- h,= 12 in 300 Ibs zv..- ....,. .. _..... .. af' a......_ .. It,= 12 in 300 Ibs hz= 12 in 300 Ibs h,= 6 in 300 Ibs Total Shelf Height,H,= 54 in ... Unit Height,H.= 54 in i Unit Base Depth,D= 11 in Load Case 1 (Load cases per RMI sect 2.6.80)) Load Case 2'(Load cases per RMI sec[.2.6.8(2)) 'E Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(Ip)= 0.090 Ws Total Wt,Ws=(0.67)[0.67PL]+DL= 773 Ibs Total Wt,W,_(0.67)[(1)PL]+D1-= 301 Ibs Base Shear,V=C,1pW,= 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs Horizontal forces per level,F.=CV(RMI seat 2.6.6) Horizontal forces per level,F.=CV(RMI sect z 6.6) (Service Loads,E=03) Fa= 0.0 Ibs @ 0 in(CM) (Service Loads) Fa= 0.0 Ibs Note: Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs i1 i (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) F5= 0.0 Ibs the top of shelf at each level. F5= 15.0 Ibs @ 60 in(CM) F,= 16.4 Ibs @ 60in(CM) Fa= 12.0 Ibs @ 48 in(CM) Fa= 0.0 Ibs F,= 9.0 Ibs @ 36 in(CM) F,= 0.0 Ibs F,= 6.0 Ibs @ 24 in(CM) Fi= 0.0 Ibs F,= 10 los @ 12 in(CM) F,= 0.0 Ibs F.= 3.4 Ibs @ 27 in(CM) F.= 2.5 Ibs @ 27in(Chi) if,= 693 Ibs(@ Factored Loads) Ef;= 27.0 Ibs(@ Factored Loafs) Calculate Overturning Moment(Service),MOT=Yf;h; Calculate Overturning Moment(Service),MOT=Yf;h; MOT= 2077 in-Ibs MOT= 1051 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),M- M-= 6050 in-Ibs MRST= 2200 in-Ibs Factor of Safety Factor of Safety FOS=2.91 FOS=2.09 'Load cases are per ASCE 7-05 sec.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24lbs 9lbs -:IGH7 5A'(}E 5 6 :3iNC-t1LYR R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) 'gtj ( STRAP z .».ia- .L? Overturning FOS= 2.913-1.5 2.092>=1.5 *-"' PIAC STRAP AhCt+:7Rs AT 1 EACH ENr FRAME AND 5-6'bc Sliding Restraint force,RRST/FOS=144lbs/5.932>=1.5 OK 621bs/6.518>=1.5 OK t t MAxt AT INTFR CR FRAMFS, -'P;uNo. Reactions(Factored Loads): LC#1 LC#2 Iti C` u, Base Shear(Ra= 35 Ibs 13 Ibs ;z ANC41)R ED.TS RER Net Uplift(Ry)= 0 Ibs 0 Ibs " - S-RAP AT IN'ERICR FRAMES Overturning+Gravity(P„)= 1138 Ibs 401 Ibs Anchor Design(using"Cracked Concrete"Properties) " Try:3/6"0 Powers Wedge-Bolt+Screw Anchor 2 1/8'embed. .,� .. .,. -.-. .... Embedment= 2.125 in f"= 3500 psi en= 0 in<---Eccen.Of Anchor by= 1.425 in 1.5(h„)=2.25 in Conc.thickness,I= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in As,= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)OV„= 3303 Ibs<--ACI 31B-08 Eq D-20 Steel Strength(0.75)¢N„= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(015)0Vcsp= 1001 Ibs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)0cb,,= 1517 Ibs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)mV°N= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)ONP,= 1252 Ibs<--ACI 31B-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)mVu,p= 1597 Ibs<-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)mV,,= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V j= 35 Ibs 13 Ibs MIN[(pNsa,tpNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE wall-18S r Wall Shelving/Single Sided No No « 54"Tall"S"5 Level 1403002901 1 a 52 G,-Name Northam ton,MA-#2901 weer IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 crwwsa ev ow. Punching Shear Check: H/2 X—X H/2 (Design per section 22.5.4 Act 318-08) j Max.Factored Verticai Load(P„)= 1202 Ibs Slab Concrete f'<= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. I r Rack Post Y-Y= 2 in. I <4 I b.= 24.00 in. � I } p= 1.00 1 V°= 22718 Ibs Eq.(22-10) V.max= 15107 Ibs Eq.(22-10) OV„= 9064.38 lbs VJOVn= 0.133<1.0OX. �bo (Punching Perimeter) REAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY ALIT NOT Slab tension based On SOII bearing area check: ROIAT1 AT OTHER--UNIFORMLY DI$1RIELITED LOAD Allowable soil bearing= 1500 psf 1 Max.Vertical Load(Service)(P)= 797 Ibs ' � r Area regd.for bearing(A,,,p)- 0.53 ft� h tm,a rqu.,..unaoeM Lase -By "b"distance= 8.74 in (yn+ _ R Slab thickness(t)= 4.00 in v% S=(,)(t)2/6= 2.67 in3/in 0MM(tension allowable)=Q7.5)[(f'J"](S)= 710 in-lb/in ! 7z�` Factored uniform bearing,w„ P„/A,= 16 Ibfinfin M.=w„1-2/3=(w,J[(b-(2"))/2)�]/3= 59.58 in-lb/in-Dell.End M1=30 in-lb/in MAKI= 0.084<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 9.5 in Slab thickness(t)= 4.0 in "- f Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)'16= 32.0 ins/ft r I Allowable Concrete Slab Bending Moment,M,VFS=S'f,/1.5= 1183.2 fl'Ibs/fl Effective Cantilever Span Length(1-j at M,li= 6.9 fl }) Total Length of Stab(1<+Width of Single Rack)= 7.7 ft r) Trib.Width of Slab=Trib width of Rack= 8.0 ft Weight of Concrete Slab at Rack(P_)= 3068 Ibs Resisting Moment-Concrete Slab at Rack,MRST(—)=P_'L</2= 141235 in`lbs Load Combination#11: MoT- 2077 tn'9bs —t'. MRST(Rw) + MRST(m b)° 146460 in'Ibs I j it ....... I...., ,� Total Overturning FOS= 70.517 OK Load Combination#2: MOT= 1051 in'Ibs MRsT(wc) +MRST(wb)= 143135 in'Ib5 Total Overturning FOS= 136.130 OK — Wall-12S Wall Shelving/Single Sided ENO B,a Rp 54"Tall"S"5 Level 1403002901 3 a 52 Northampton,MA-#2901 Seismic Importance Factor z 1.5 Supported on Elevated Floor(YIN). No ace By ibtr MAV 04/14/15 Total Load per shelf z 150 Ibs cna�aa B, #of Levels= Wag 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 37.50 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 12 in Total Shelf Load/Level hB= 0 i he= 0 in h,= 0 in he= 0 in hs= 12 in 300 Ibs - h+= 12 in 300 Ibs h,= 12 in 300 Ibs h,= 12 in 300 Ibs h,= 6 in 300 Ibs y ...,... ;-•-.�3 -"v. ----_- Total Shelf Height,H,= 54 in j Unit Height,H„= 54 in j Unit Base Depth,D= 9.5 in i Load Case 1 (L-d cases Per RMI sect.2 6.8(1)) Load Case 2* (Load cases Om RMI sect.2 6.8(2)) Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(Ip)= 0.090 W, .I Total Wt,W,_(0.67)[0.67PL]+01_= 773 Ibs Total Wt,W,_(0.67)[(1)P1_I+D1_= 301 Ibsr"""" ''- Base Shear,V=C,IpW,= 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs ' I i 3 Horizontal forces per level,F.=C.V(RMI sect 76.6) Horizontal forces per level,F,=CV(RMI sect 286) ,_m (Service Loads,E=0.7) FB= 0.0 Ibs @ 0 in(CM) (Service Loads) Fa= 0.0 Ibs Note: Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs s (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) FT= 0.0 Ibs typically 6 inches above F,,= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs ` the top of shelf at each level. Fs= 15.0 Ibs @ 60 in(CM) Fs= 16.4 Ibs @ 60in(CM) F,= 12.0 Ibs @ 48 in(CM) F,= 0.0 Ibs F,= 9.0 Yes @ 36 in(CM) FB= 0.0 Ibs F,z 6.0 Ibs @ 24 in(CM) F,= 0.0 Ibs F,z 3.0 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.4 Ibs @ 27 in(CM) F.= 2.5 Ibs @ 27in(CAI If,z 69.3 Ibs(@ Factored Loads) If,= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ifh; Calculate Overturning Moment(Service),MOT=%f;h, MOT= 2077 in-Ibs MOT= 1051 in-Ibs Calculate Resisting Moment(Service),MRS, Calculate Resisting Moment(Service),MRST Masi= 5225 in-Ibs MRST= 1900 in-Ibs Factor of Safety Factor of Safety FOS=2.52 FOS=1.81 'Load cases are per ASCE 7-05 sec.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 Ibs 9 Ibs ' R,,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) I IoHr C:AVGE 2' EE-:AKCx?R ,. STRAP tt 22A Trtk) Overturning FOS= 2.516>=1.5 1.807>=1.5 _ I- - c ACE STRAP A ,.HORS AT Sliding Restraint force,RRBT/FOS=151lbs 1 6.24>=1.5 OK 65lbs 16.917>=1.5 OK EACH END FRA6 E ANG 5 4-P k AA\y AT NT�RnR FRAMES. Sk-- TVPr4P(O. Reactions(Factored Loads): LC#1 LC#2 Base Shear(Rj= 35 Ibs 13 Ibs - Net Uplift R,,- 0 Ibs 0 Ibs ANCHJR 6a:.TS P.ER P ( ) - S. .AP AT INTERIOR FRAMES Overturning+Gravity(P.)= 12021bs 433lbs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. r Embedment= 2.125 in f'�= 3500 psi 1 e,= 0 in---Eccen.Of Anchor - hy= 1.425 in 1.5(h„)=2.25 in Cone.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs< ACI 318-08 Eq D-20 Steel Strength(0.75),l,N„= 10043 Ibs-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)ij,V«= 1001 Ibs c-ACI 318-08 Eq D-22 Concrete Breakout(0.75)mNp,,,= 1517 Ibs---ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)0V ft= 703 Ibs<--ACI 31 B-08 Eq D-22 Pullout Strength(0 75)�Np„= 1252 Ibs< ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)pV,,,,i= 1597 Ibs<-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)4V,= 1634 Ibs o-ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 35 Ibs 13 Ibs MIN[1pNsa,<pNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC I CBC,sec 1908 1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-12S e Poject N. Sheet N. Of Gondola (Shelving)Anchorage Design 1403002901 2 52 Project Name: Store Latitude/Longitude Coordinates(per Google Earth): Northampton,MA-#2901 Made By D.w N 42e 20'29" 42.341389 MAV 04/14/15 W 720 38'38" 72.643889 Checked By Dab IBC 2009 / ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Response Modification Factor,R= 4.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,00= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Cd= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= II IBC,Table 1604.5 Importance Factor,Ip= 1.5 ASCE-7 Sect.15.5.3 0.2 Second Period Accel.,SS= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 Fa= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F„= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 SMS= 0.358 IBC eq.16-36,ASCE-7 eq.11.4-1 SM,= 0.158 IBC eq.16-37,ASCE-7 eq.11.4-2 SDS= 0.239 IBC eq.16-38,ASCE-7 eq.11.4-3 SD,= 0.106 IBC eq.16-39,ASCE-7 eq.11.4-4 Seismic Design Category --based on SDS= B IBC Table 1613.5.6(1),ASCE-7 Table 11.6-1 --based on SD,= B IBC Table 1613.5.6(2),ASCE-7 Table 11.6-2 Ce= 0.060 RMI sect.2.6.3 Cs,min= 0.011 RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear,V=CSIPW= 0.090 W RMI sect.2.6.2 Load Combination:(0.67-LC#1 or 1.0-LC#2)DL+/-(0.7)EL-RMI 2008,sect 2.6.8-Seismic Overturning Stability(ASD) (0.67)= 0.670 DL <---LC#1,per RMI,2.6.8 (1.0)= 1.000 DL <---LC#2,per RMI,2.6.8 (0.7)= 0.700 EL (0.7)= 0.700 EL Load Combination:(0.9-01SWDL+/-EL-ASCE 7,sect 2.3.2&12.4.2.3-Seismic Uplift Critical Strength Design (0.9-0.2SDS)= 0.852 DL (1.0)= 1.000 EL Load Combinations for ASD Member Design(2008-RMI,Section 2.1): DL=Dead Load for RISA Frame analysis PL=Maximum load from pallets or products stored on racks LC#1: DL EL=Seismic Load-RMI section 2.6.6-Vert.Distribution LC#2: DL+PL(all shelf levels) LC#3a: (0.6-0.11 SDS)DL+(3/4)[(0.6-0.14SDS)PL,,-(0.7)EL] <---EL and PL.,=(0.67)PL at each shelf level 0.5737 DL 0.4249 PLam 0.7500 EL LC#3b: (0.6-0.11 SDS)DL+(3/4)[(0.6-0.14SDS)PL.w-(0.7)EL] <---EL and PLap,=(1.0)PL at top shelf only 0.5737 DL 0.4249 PLa, 0.7500 EL 1 y Project No. Sheet No: Ot. Gondola (Shelving)Anchorage Design 1403002901 1 52 Project Name. Northam ton,MA-#2901 Store Latitude/Longitude Coordinates(per Google Earth): Made By Date N 42°20'29" 42.341389 MAV 04/14/15 W 72°38'38" 72.643889 checked By Date IBC 2009 / ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Response Modification Factor,R= 4.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,IIa= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Cd= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= II IBC,Table 1604.5 Importance Factor,IP= 1.0 ASCE-7 Sect.15.5.3 0.2 Second Period Accel.,Ss= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs. 1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 Fa= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F„= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 SMS= 0.358 g IBC eq. 16-36,ASCE-7 eq. 11.4-1 SMt= 0.158 g IBC eq.16-37,ASCE-7 eq. 11.4-2 SDS= 0.239 g IBC eq. 16-38,ASCE-7 eq. 11.4-3 SDI= 0.106 g IBC eq. 16-39,ASCE-7 eq. 11.4-4 Seismic Design Category --based on SDs= B IBC Table 1613.5.6(1),ASCE-7 Table 11.6-1 based on SDI= B IBC Table 1613.5.6(2),ASCE-7 Table 11.6-2 C.= 0.060 RMI sect.2.6.3 Ca,min= 0.011 RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear,V=CSIPW= 0.060 W RMI sect.2.6.2 Load Combination:(0.67-LC#1 or 1.0-LC#2)DL+/-(0.7)EL-RMI 2008,sect 2.6.8-Seismic Overturning Stability(ASD) (0.67)= 0.670 DL <---LC#1,per RMI,2.6.8 (1.0)= 1.000 DL <---LC#2,per RMI,2.6.8 (0.7)= 0.700 EL (0.7)= 0.700 EL Load Combination:(0.9-0.2SDs)DL+I-EL-ASCE 7,sect 2.3.2&12.4.2.3-Seismic Uplift Critical Strength Design (0.9-0.2SDS)= 0.852 DL (1.0)= 1.000 EL Load Combinations for ASD Member Design(2008-RMI,Section 2.1): DL=Dead Load for RISA Frame analysis PL=Maximum load from pallets or products stored on racks LC#1: DL EL=Seismic Load-RMI section 2.6.6-Vert.Distribution LC#2: DL+PL(all shelf levels) LC#3a: (0.6-0.11S0S)DL+(3/4)[(0.6-0.14SDS)PL.,-(0.7)EL] <---EL and PL.,=(0.67)PL at each shelf level 0.5737 DL 0.4249 PL., 0.7500 EL LC#3b: (0.6-0.11 SDs)DL+(3/4)[(0.6-0.14SDS)PLaw-(0.7)EL] <--EL and PL.,=(1.0)PL at top shelf only 0.5737 DL 0.4249 PLa, 0.7500 EL .re. Johnston Bur"ol+derAssociates CONS ULT' I N STRUCTURAL ENGIN F FRS STRUCTURAL FIXTURE ANCHORAGE CALCULATIONS FOR Northampton, MA 180N King St Store 42901 PREPARED FOR CITY OF NORTHAMPTON, MA 0SEPH N. E FL.A R i sTRU��'r�r,r;L Jb No. 50%c.0 /o e ,•i JBA PROJECT #1403002901 930 CENTRAL,KANSAS CITY,MO 64105 PHONE (816)421-4200 FAX(816)421-4381 a�+ 4 Z boo -r A K(6 bV� 4" 1. 4" I.D. ►i{32�I �D 411 I6 16 27 42 32 I�„ _ -- Area: 1.65x7 5q In Perimeter: 28.7035 in Gentroid: X: 0.0000 In END BEARING �' I I I Y: 12.7117 in- N i � - Moments of inertia: X: 185.5574 in 4 CAM i i ~!� Y: 4.x345 in 4 • i i i Radii of gyration: X: 10.4485 In i I Y. 1.7035 in, TYP 5EGTION TOP CHORD Area: 1.0011 scL in Perimeter: 17.2754 in Gentrold: X: 0.0000 in Y: -05706 in Moments of inertia: X: 0.4131 in 4 Y: 3.5245 In 4 Radii of gyration: X: 0.6424 in Y: l b765 In cv i BOTTOM CHORD Area: 0.6586 scL In I Perimeter: 11.4281 in Gentrold: X: 0.0000 in - - Y: 0.2202 In Moments of Inertia: X: 0.0515 In 4 Y: 1.4056 In 4 Radii of gyration: X: 0.2726 in ' Y: 1.4204 in WALLACE DESIGN PROGRAM Revised 07115110,Matthew Gebhardt Page 7 Copyright Date 4/14/2015 Sheet No. of Project Northampton, MA Subject web reinf for new comp/cond units OPEN WEB STEEL JOIST REINFORCING VmAx= 6.89 KIPS (EVALUATED AT ENDS) VALLOW=WALLOWL/2= 4.74 KIPS V(MAX)AT ENDS= 6.89 KIPS (AT 0.0 FT FROM LEFT END) DETERMINE FORCE IN WEB MEMBER AT END OF JOIST Pert EX�s1-• I 24 IN J $= 90-tan'(I1/d)= 31.4 DEGREES I` a= tan'(2d/I2)= 59.0 DEGREES DEPTH C TE= RE/SINS= 13.22 KIPS =20.2 IN E TE CE= TE(SIN�)/SINa= 8.04 KIPS n TRY: L1-1/4X1-1/4X114 (EA.SIDE OF JOIST) Fy= F----5-01 KSI E= I 29000 KSI 11 =F-36 IN IZ=F-2-4- IN Fu= 58 KSI WELD: 0.188 1.50 IN(EA.MEMBER,EA.END) JOIST WEB MEMBER LAYOUT CHECK END WEB REINF AND WELD FOR TENSION AREA,Ag= 1.126 SQ IN (2 MEMBERS,ONE EACH SIDE) YIELD,F'y= 48.10 KSI (F'y=Fy-fp,PRESTRESS OF EXISTING JOIST DUE TO DEAD LOAD) V LAG,U= 0.6 TENSION CAPACITY= 19.59 KIP MEMBER OK FOR TENSION Pn — F 'y A g < Fu UA S WELD CAPACITY= 14.32 KIP WELD OK FOR TENSION Q t 1 .67 2.00 CHECK FIRST COMPRESSION WEB REINF AND WELD LENGTH OF MEMBER= 23.3 IN rx= 0.369 IN Ur.= 63 (KUr)'= 119 (FOR ANGLES ONLY) KUr= 119 (USED) Fe= 20.07 KSI Fcr= 17.60 KSI COMP CAPACITY= 11.87 KIP MEMBER OK FOR COMPRESSION WELD CAPACITY= 14.32 KIP WELD OK FOR COMPRESSION Angles F = z E blt<_AY e (KL l r)2 LIrX _<80-->(KLJr)'=72+0.75L1r FQ >_ 0.44 F'y Fir = F'r (0.658)F y F° Ll rX >80->(KUr)'=32+1.25L1 r_<20 Fe < 0.4417'y F, = 0.877 Fe P„ Fa A g Q 1.67 WALLACE DESIGN PROGRAM Revised 07115110, Matthew Gebhardt Page 2 Copyright Date 4/14/2015 Sheet No. of Project Northampton, MA Subject web reinf for new comp/cond units OPEN WEB STEEL JOIST REINFORCING 3. Reinforcement Calculations Shear 45.4%Overloaded(w/o reinforcing) Add'I Shear Force Req'd= +/-6.89 kips Input Force in Web Members: Web Reinforcing Size: L1-1/4X1-1/4X1/4 (ea side) Tension= 13.22 kips Weld Size= 0.1875 in (tot ea member, Compression= 8.04 kips Weld Length= t 1.50 in ea end) Y Reinforcing Capacity Tension= 19.59 kips o.k. Compression= 11.87 kips o.k. or Weld Capacity= 14.32 kips o.k. 0. u z; WALLACE DESIGN PROGRAM Revised 07115110,Matthew Gebhardt Page 1 Copyright Date 4/14/2015 Sheet No. of Project Northampton, MA Subject web reinf for new comp/cond units P max=894 Ibs OPEN WEB STEEL JOIST REINFORCING AISC 360-05 ASD, SJI TD#12 1. Input /vtoAlFl�p 1��.1°TI�J S�� Gr}t.GS Joist Size= Chord Depth, d= 20.2 in (For SP joist,enter d,TL,and LL. Reinforcing Total Load Capacity= 237 Of For standard joists,leave blank to Web Live Load Capacity= 145 plf import from SJI tables.) Reinforcing Length, L= 40.00 ft f AAA OL'16. 6i:514;N (,AD Tributary Width,s= 6.00 ft 7q.5$VMp~C1 e S Dead Load,wdead= 15 psf L Const Dead Load= 10 psf (Tot DL on joist during reinf) X Live Load,w1;,= 35 psf (or snow load) P Collateral Load,wco,_ 0 psf wLIVE �I wDEAD W Point Loads: 1 2 3 4 5 6 P(lb) 894 894 0 0 0 0 T X(ft) 16.33 23.67 0.00 0.00 0.00 0.00 Point Load Type: DEAD (DEAD,or LIVE) RL RR 2. Calculation Summary Load Conditions: Joist Capacities: ea oa , dead= 90.0 Of Depth,d= 20.2 in Live Load,W11Ve= 210.0 plf Total Load Capacity= 237.0 plf Collateral Load,WcDi= 0.0 plf Live Load Capacity= 145.0 plf Total Load,W,ot= 300.0 plf Prestress in joist,fp= 3.8% (due to in-place dead load) Left Reaction RL= 6.9 kips Allowable Shear= 4.7 kips(at end) Right Reaction, RR= 6.9 kips Allowable Moment= 47.4 k-ft Max Moment= 74.6 k-ft Stress Reversal= 0.0 ft(left side) Shear Diagram 8.0 -• - APPLIED LOADING 6.0 ALLOWABLE 4.0 \ 2.0 \ Y 0.0 \ N -2.0 \ -4.0 \ -6.0 \ \ -8.0 0 10 20 30 40 50 Distance(ft) 45.4%Overloaded(w/o reinforcing) Date Sheet No. S of Job Subject Reference E) C,o N T. — H-09-1-.• 1=v2c.�E gY W8L0 erWN Pc,4T6 "U cj}aZQ R4611VI:. Cpoi AND OCST Tiz11 3�6" G►t.Ixt wL L0 (l�'IiN) EEPll� �"S OF C.Up2lJ fLtjN�EI [r�o2p .1 /.�/� x i I -7 5.-7 k — VEf T i�'o(LCE K.CStSIED C51 vVt�v—O 9TWNI j4-rT (14itCArT pCA-1r-/S6.4� ► NW: AND -n E FZ The p �f�--y 3/6�� �6L1,,�T w�c.� � �ssV�� z'' 7•�T1��- w��� ,4TT 1� � s�T,4�6U� i I my Flu r t L-LT WLLO � [ r2,. ,P��E�. -rl15 IIAf 6 6(Z- Lf 6= E6^ . I i i I I I I Date Sheet No. y of i Job Subject Reference 2J Cr�NT C-46C V &Uc i:-ON 6 Of CPMP(-Cssi off G�}A C) � 0,zu 3 Fy.so LA s C� - 107,a (� r _ - � oa9 3 --� �a oat �z0. g3 ✓ b.zy 3 " _ Cc I-L „ �s prIU r (A„ zps COOP-40 F—EINF 7b P—Y,)s-r. 3) C 4E;(-V, WES CAPAck,�y — Rt=-� oPEnf w�.� s,EE� ����. �P�i>u1-pv1" CDR IM�R R!✓Irlr ��,c, Q-eF OPi✓N Vj S-MtL , ',�s� PF-INTOIT o2 Writ 12ZINP L*LC 1 56: MWN. of l'/z l' x ;3/16`E FILL-T' MELL 6A s1D vl`Alllc- & E4�6NO 5) CAC-Ck- 5Hek- PL*re S-rg-es-S 1) ENS 51EYATS v V.- G0091CO 31 � It 7, its �r�4T� � -boa �1rtuQa QIN II.s =69vv fls 31.43 o �- I U � 113k-A- 7k/� ( Date Sheet No. of Job Subject Reference Ll y 415C �-d, I 3 Ca. = 3 DISC. 9� £� r� Ca r'>1 = ti,H9 g x 36 IGs; = 17,°I3 Ins,' < �',, — 2043 ks; �( ,�• USA F = so i Kam/ ��{ (�•�I C Ol a= 047zx� b = 23 b k5t 20.83 ks,' ✓ vSE LI%Xl i144' C 5oks Z) P-r--W0 WLL11Al Q Fat CP-6Z� t:- - i KV '/,Li r-rLr r w t 0 , ��ti f kv,61,n CA19-40TV - O-IZO i`f,/ X q 3.712 K/�, MAV AN6t.L F'D(L-c.t o•6 uso 0.51 k i Lr-N(,-r 1 W rk-l.ET P–Cq'p = (6.9k13•7iZ �/� = LI,b Wu-D AL-OtX, UN61'4 oF-� M6MGLK i I$r, 6 i�y 5°.r C?/ A) Lei'. _ ��,�-' � 14 Sb r l6/•�l ,n `� F�"oP�rZ�� L 11uc9 S E A O�,Ft cJ1 01\1 ij(6bunl �M�Tlbnl IN t� r3s1� V6010 SHOP- Row V =V Q = 6,9 k. x ( 0,56 3)h' X 10. 1 ih) _ o. ZH 3 / I�N6c.0 Q " Z W t?MF-NT lAeoi-r NEUT(UkL AXI S or Ag-g5,q r�1 W 1q i o f sic t►0 7k1 P�l, 64 PANrL PTA P�-ul;L pi- 0- Zy qG VNGTN OF WLI) 0, aq3 k/� x 2y '` I = 3 I5 <P (0•u.7�� h 10 i Date Sheet No. a of Job Subject Reference i P � NEW ►-OPrt RZ(JW S WNTS W M -T-'aTAL = w-�z +- PC. i P, f� (,p LSD Sp- r_t3r, oC) ►6,33' �,3;, f6.33� MT07AL =(Q'S 35�Xb�y) X yO'Z + 8 1l xx►6.-�3' 7 yo, $x 1000 -►k,� 1- ✓,v = M x -7g,6 k FE XI vvu = 3-13 Pig z Zv' = ._ fZ� wC P =(t.►�� s > ` k Vol k 9wq 6B9�1 ILs Z Z r)c1S1"iMCI 10ISK S WILL N'�' 540e-l�-� bup-ilk 6 CONSTizic"nN k4 bb I-r101gAL LN+oP 1 � 2.C.L = M p —MA wo�,,= 7�'b ��1 _tI7 qk -t ZV (-z-) L I ''y x I !�� k '<� (,0 tq-F (>ry=36�si� �� p ct>v�o p5 A- z x 0. 56 3 i�= = l lz6 �L 1) C- EC—Y- Go/M Pj2-a51 bT! C I+OE ) AP1 LP. P-E IIUR ' OL qq 3 20. 83 ksi �x CCki�f�� ?°OP ct4o21Ja 13 1 ,k N SECT iaR( 5 �l F (A 2,IZ-'I ins i r aYLf Date Sheet No. I of C Job)gQ T*AMP'(aN MA - 4Moi)EL Subject Ntrw Mgal Reference New v t"�S l� �oMP2�SSo(Z WT Nuulg Ibs = J•15x L1400/ '4- to= ojq it z,)CuN N Sv,�2, WT IL s , (' = M-5 v 2YOO/y t° _ -7 bq Q b 551�ftfS IDL= IT psi OC, LL SL qD Psi x o.-7 -Z6.0 PS �-- u5� 3S7 PIT -rAV-ova 16 r/ Iq,6 psF - qps Cif(.) I S�G�'� IND ANAVNS ctMPON-,N'15 CL.ANOIIN� IZOol✓ 'f~(lfI 100 f}'- ENQ Eonl,E rI ADsi r EXI STING -°1)1SFs i i - Se5 S6(-TIDAI Pp-oPE-1'1�5� PR?/VTQQ—r f:MZ Mor:,rlr Fpw4acp T,41e.'evviER t - ois`rs sPpear-t,EQ As s3I -z2-H oN �R1�. I)wC_S • L-No's TL/L= 2-7 1/1l, �" 1�1U; LL=O �° j, � 21'7.5� SQL Lu�fj - /}SS[J1ME�} (".rt�(�;. t��s1GN Cl1l�•pS; ?�`+t3L� i psC s 3SP5F� o -r - Zy � � , USE' Lt=zy,T j sEcTaN PZoPi (Z,7-T-S oa✓ !D(15T1tNG 3ois,S 1st-cAl bTI -SEc-r(ON p9OfpC9-'T'lK-S FQ-0M ZOOD 1-A"6Vf`R. S�Fe1✓T�� krop tG god � 0,•69 gg ;�Z r/G M/d > 1 }AI-Lnw � W,(?.� =(�ZN•� k7s)�L�) u `Ib°�vll7G� _ <<� `f k �� i C z-► u k I goy - - 2-r,o: k - 3 g•iay ks,° © 6 )<I5 r llvG M4 9E- -70 KsJ �2 /Je —� V�tiy � 2009 IBC Seismic Tables Site Coefficient,Fa Table 11.4-1 and 1613.5.3(1) Site Mapped Spectral Response Acceleration at Short Periods(Ss) Class Ss<=0.25 0.5 0.75 1 Ss>=1.25 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.20 1.20 1.10 1.00 1.00 D 1.60 1.40 1.20 1.10 1.00 E 2.50 1.70 1.20 0.90 0.90 Site Coefficient,Fv Table 11.4-2 and 1613.5.3(2) Site Mapped Spectral Res pons Acceleration at 1 Second Period S1 Class St<=0.1 0.2 0.3 0.4 S1>=0.5 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.70 1.60 1.50 1.40 1.30 D 2.40 2.00 1.80 1.60 1.50 E 3.50 3.20 2.80 2.40 2.40 Seismic Design Category based on Short Period Response Acceleration (Table 1613.5.6(1)and 11.6-1) Value of Occupancy Category Sds I or II III IV Sds<=0.167 A A A 0.1 67<=Sds<0.: B B C 0.33<=Sds<0.5 C C D 0.5<=Sds D D D S1>=0.75 E E F Seismic Design Category Based on 1-Second Period Response Acceleration (Table 1613.5.6(2)and 11.6.2) Value of Occupancy Category Sd1 I or II III IV Sd1<=0.067 A A A 0.067<=Sd1<0. B B C 0.133<=Sd1<0. C C D 0.2<=Sd1 D D D S1>=0.75 E E F 3. Design Loads for the elements of the structure,nonstructural components,and equipment supported by the structure: (Chapter 13 and Section 12.10) Max.Load=1.6 Sds Ip Wp= 0.375Wp(Equation 13.3-2) for Ip=1.5= 0.563Wp Min.Load=0.3 Sds Ip Wp= 0.070Wp(Equation 13.3-3) for Ip=1.5= 0.106Wp a. Check the Out-of-Plane Seismic Load on Bearing or Shear Walls: (Section 12.11) Fp=0.40 Is Sds wp or.10 wp min.= 0.100Wp multiply by 0.7 for Allowable Stress Design= 0.070Wp b. Check the Seismic Load on Exterior Non-Structural Walls: ap= 1.00 (Table 13.5-1) Rp= 2.50 (Table 13.5-1) hxl= 0.00 ft. Height at floor attac Fp= 0.070Wp at floor hx= 6� 8 Height of roof attact Fp= 0.1 13 Wp at roof hr= 16.83 ft. Height of the roof Fp(average of roof and floor)= 0.092Wp multiply by 0.7 for Allowable Stress Design= 0.064Wp c. Check the Seismic Load on the Parapets: ap= 2.50 (Table 13.5-1) Rp= 2.50 (Table 13.5-1) Assume parapet is attached at roof,therefore hx/hr=1. Fp= 0.282Wp multiply by 0.7 for Allowable Stress Design= 0.197Wp d. Check the Seismic Load on the Interior Partitions(non-masonry)supported at the roof: ap= 1.00 (Table 13.5-1) Rp= 2.50 (Table 13.5-1) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.113Wp multiply by 0.7 for Allowable Stress Design= 0.079Wp e. In Seismic Design Categories C,D,E,and F;check the Seismic Load for anchorage of concrete or masonry walls to a flexible diaphragm: (Section 12.11.2.1 and 12.11.2.2.2)Use section"a"if Seismic Performance Category B Fp=0.8 Sds le wp or.10 wp min.= 0.188Wp multiply by 0.7 for Allowable Stress Design= 0.131 Wp '1.4= 0.263Wp multiply by 0.7 for Allowable Stress Design= 0.184Wp 'Note:In Seismic Design Categories C-F,the strength design forces for steel elements,excluding reinforcing steel and anchor bolts,of the wall anchorage system shall be 1.4 times the force otherwise required by section 12.11.2.2.2. But the minimum wall anchorage load for concrete or masonry walls is: (Section 12.11.2) Fp= 280 pif multiply by 0.7 for Allowable Stress Design= 196 pif f. Continuous Load Path and Interconnection: (Section 12.1.3) Fp=0.133 Sds wp or.05 wp min.= 0.050Wp multiply by 0.7 for Allowable Stress Design= 0.035Wp g. Connection to Supports: (Section 12.1.4) Fp=.05'dead+live reaction= 0.050 Rd+I multiply by 0.7 for Allowable Stress Design=0.035 Rd+I h. Check the Seismic Load of masonry walls to a rigid diaphragm:(Section 13.4.2) For the Body of the Wall Panel Connection: ap= 1.00 (Table 13.5-1) Rp= 2.50 (Table 13.5-1) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.113Wp multiply by 0.7 for Allowable Stress Design= 0.079Wp For the fasteners of the connecting system: ap= 1.25 (Table 13.5-1) Rp= 1.00 (Table 13.5-1) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.352Wp multiply by 0.7 for Allowable Stress Design= 0.246Wp However,for anchors in Concrete or Masonry per section 13.4.2: ap= 1.00 (Table 13.5-1) Rp= 1.50 (Section 13.4.2) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.188Wp multiply by 0.7 for Allowable Stress Design= 0.131 Wp '1.3= 0.244Wp'1.3= 0.171Wp Note:Per ASCE 7-05(13.4.2),Anchors embedded In concrete or masonry shall be proportioned to carry 1.3 times the force in the connected part due to prescribed forces. But the minimum wall anchorage load for concrete or masonry walls Is: (Section 12.11.2) Fp= 280 plf multiply by 0.7 for Allowable Stress Design= 196 pif WALLACE DESIGN PROGRAM ___ Revised 5113/10, Kenna Chapin Copyright Date 4/1012015 Sheet No. of Job Northampton,MA Subject -- -- ----------- 2009 IBC(Ch: 16) and ASCE 7-05(Ch: 11 to 13) Seismic Summary Loads Section 1613.1 of 2009 IBC excludes Chapter 14 and Appendix 11 A of ASCE 7 (Spreadsheet Assumes that the building is one story or low rise with a short period.) 1. User Input Values: (Single and.rlin d yal i.$) Is your structure regular with a period<Yes (Yes or No,Re:Sections ASCE7 12.8.1.3) Is structure short period with a rigid diapham with a flexible diaphragm with vertical elements of Seismic Force Resisting System spaced at 40 feet on center max.? No (Yes or No,Re:IBC Sections 1613.5.6.1 and ASCE 7-05 11.6) Mapped Spectral Response Acceleration for Short Periods,Ss= 0.220 (Figure 1613.5(1)or CD-Rom) Mapped Spectral Response Acceleration for 1-second Periods,S1= 0.066 (Figure 1613.5(2)or CD-Rom) Assumed Site Class(A,B,C,D,E,F)= D (Table 1613.5.2&Sec.1613.5.2) Building Category= II (ASCE:Table 1-1) Site Coefficient,Fa= 1.60 (Table 1613.5.3(1)) Site Coefficient,Fv= 2.40 (Table 1613.5.3(2)) Seismic Importance Factor,le= 1.00 (Table 11.5-1) Site Adjusted Spectral Response Acceleration for Short Periods,Sms= 0.352 (Section 1613.5.3,11.4.1, Site Adjusted Spectral Response Acceleration for 1-second Periods,Sm1= 0.158 and 12.8.1.3) Design Spectral Response Acceleration for Short Periods,Sds= 0.235 (Section 1613.5.4 and 11.4,4) Design Spectral Response Acceleration for 1-second Periods,Sd1= 0.106 Seismic Design Category based on short period= B (Use worst case except for Seismic Design Category based on 1-second period= B Section 1613.5.6.1) Seismic Design Category= B (Section 11.4.1 and 11.6) Basic Structural System Bearing Wall System (Table 12.2-1) Lateral Force Resisting System Ordinary Reinforced Masonry Shear Walls (Table 12.2-1) R= 2 (Table 12.2-1) no= 2(Re:Footnote g for.5 reduction for Flexible Dia.;(Table 12.2-1) Cd= 1.75 (Table 12.2-1) px,redundancy in x-dir.= 1.00(Redundancy is either 1.0 or 1.3) (Section 12.3.4) py,redundancy in y-dir.= 1.00(Redundancy is either 1.0 or 1.3) (Section 12.3.4) p,=1.0 for Seismic Design Category S_a_n_di7,_re:12.3.4.1 for additional exceptions. 2. Design Loads for the Building Lateral Force Resisting System: If Seismic Design Category A,Need comply with Section 11.7 only. a. Find the Design Base Shear for the Lateral Force Resisting System: (Section 12.8) V=(Sds/(R/1))W= 0.117W multiply by 0.7 for Allowable Stress Design= 0.082W For the X-direction: E horizontal= 0.117W multiply by 0.7 for Allowable Stress Design= 0.082W For the Y-direction: E horizontal= 0.117W multiply by 0.7 for Allowable Stress Design=�b dB�VP b. Find the Design Seismic Shear for the Diaphragm: (Section 12.10.1.1) Max of 0.2*le"Sds and section a 0.117W multiply by 0.7 for Allowable Stress Design= 0.082W but need not exceed 0.4`le*Sds 0.094W multiply by 07 for Allowable Stress Design= aP For Seismic Design Categories C through F: The collector elements(drag struts)for the diaphragm shall be designed for the strength design values, Em=f2o x Eh per Section 12.10.2.1 and 12.4.3.2. If the collector Is designed using ASD methods,the strength of the member can be determined by using an allowable stress increase of 1.2(Section 12.4.3.3.) Em= 0.235W for Allowable Stress Design= 0.137W c. Find the Vertical Earthquake Load Component: (Section 12.4.2.2) E vertical=0.2SdsD= 0.047D multiply by 0.7 for Allowable Stress Design= 0.033D For design of foundations using ASD and where Sds<0.125,vertical force may be taken as zero. (Section 12.4.2.2) WALLACE DESIGN PROGRAM Revised:1010312013 -- Author:Katie Faulkner Date 4/10/2015 Sheet of Job Northampton,MA Subject WIND ANALYSIS:ANALYTICAL-ALL HEIGHTS METHOD ASCE 7-05,Section 6.5 3.Calculations-Component and Cladding Elements Kz,velocity pressure exposure coefficient= 0.87 Table 6-3 (use with qh) Kz,velocity pressure exposure coefficient= 0.98 Table 6-3 (use with qp) Kzt,topographic factor at hh=17.33ft= 1.00 Fig.6-4 (use with qh) f 3 Kzt,topographic factor at hp=30ft= 1.00 Fig.6-4 (use with qp) Kd,wind directionality X� Z Y factor= 0.85 Table 6-4 I,importance factor= 1.00 Table 6-1 2 / /X 3 G,gust factor= 0.85 Section 6.5.8.1 5 qh,velocity pressure at hh=17.33f1= 15.33 psf(Eq.6-15) 3 X\ // 2 qp,velocity pressure at hp=30ft= 17.27 psf(Eq.6-15) 5 2 X/ 4 Walls:trib.Area=100 sq.ft. qh GCp GCpI P 3 Zone 4 Interior Zone 15.33 -0.83 0.18 -15.5 psf 4 Zone 5 End Zone 15.33 -0.94 0.18 -17.2 psf 5 5 Zone 4 and 5 15.33 0.74 -0.18 14.1 psf Walls:trib.Area=200 sq.ft. qh GCp GCpI P Zone 4 Interior Zone 15.33 -0.78 0.18 -14.8 psf Zone 5 End Zone 15.33 -0.85 0.18 -15.7 psf Zone 4 and 5 15.33 0.69 -0.18 13.4 psf REFER TO FIGURES 6-11a AND 6-11 b Walls:trib.Area=400 sq.ft. qh GCp GCpI P Zone 4 Interior Zone 15.33 -0.74 0.18 -14.0 psf Zone 5 End Zone 15.33 -0.75 0.18 -14.3 psf Zone 4 and 5 15.33 0.65 -0.18 12.7 psf Parapets:trib.Area=50 sq.ft. qp GCp GCPI P Case A Zone 4 Interior Zone 17.27 0.79 -1.31 36.3 psf Zone 5 End Zone 17.27 0.79 -1.31 36.3 psf Case B Zone 4 Interior Zone 17.27 0.79 -0.88 28.8 psf Zone 5 End Zone 17.27 0.79 -1.04 31.6 psf Parapets:trlb.Area=100 sq.ft. qp GCp GCpI P Case A Zone 4 Interior Zone 17.27 0.74 -1.10 31.8 psf Zone 5 End Zone 17.27 0.74 -1.10 31.8 psf Case B Zone 4 Interior Zone 17.27 0.74 -0.83 27.2 psf Zone 5 End Zone 17.27 0.74 -0.94 29.1 psf Roofs:trib.Area=10 sq.ft. qh GCp GCpI P Zone 1 Interior Zone 15.33 -1.00 0.18 -18.1 psf Zone 2 End Zone 15.33 -1.80 0.18 -30.4 psf Zone 3 Corner Zone 15.33 -1.80 0.18 -30.4 psf Zone 1,2,and 3 15.33 0.30 -0.18 7.4 psf Roofs:trib.Area=36 sq.ft. qh GCp GCpi P Zone 1 Interior Zone 15.33 -0.94 0.18 -17.2 psf Zone 2 End Zone 15.33 -1.41 0.18 -24.4 psf Zone 3 Corner Zone 15.33 -1.41 0.18 -24.4 psf Zone 1,2,and 3 15.33 0.24 -0.18 6.5 psf Roofs:trib.Area=100 sq.ft. qh GCp GCpI P Zone 1 Interior Zone 15.33 -0.90 0.18 -16.6 psf Zone 2 End Zone 15.33 -1.10 0.18 -19.6 psf Zone 3 Corner Zone 15.33 -1.10 0.18 -19.6 psf Zone 1,2,and 3 15.33 0.20 -0.18 5.8 psf Overhangs:trib.Area=10 sq.ft, qh GCpn Pp Zone Interior Zone 15.33 -1.70 -26.1 psf Zone 2 End Zone 15.33 -1.70 -26.1 psf Zone 3 Corner Zone 15.33 -2.80 -42.9 psf Overhangs:trib.Area=50 sq.ft. qh GCpn Pp Zone 1 Interior Zone 15.33 -1.63 -25.0 psf Zone 2 End Zone 15.33 -1.63 -25.0 psf Zone 3 Corner Zone 15.33 -1.40 -21.5 psf a,end zone width=Min.of 10%L and.4h but not<4%L or 3-= 8.1 feet(Fig.6-11) Notes: 1.The gust factor of 0.85 is based on a building with a natural frequency of>1 Hz. For other buildings,the gust factor must be calculated. 2. If a parapet equal to 3 ft or higher is provided around the perimeter of a roof with a slope of 5 7°,the roof corner zones may be treated as end zones. (Fig.6-11 B,Footnote 5) WALLACE DESIGN PROGRAM _ Revised.10/03/2013 Author.Katie Faulkner Date 4/1012015 Sheet of Job Northampton,MA Subject WIND ANALYSIS:ANALYTICAL-ALL HEIGHTS METHOD ASCE 7-05,Section 6.5 1.Input dTlald (e Design Parameters P1`g55 a Press ae Basic Wind Speed,V= C Section 615.6 35.4,Fig.6-1) Exposure Category(B,C,or D)_ .( ) Roo( II(Section 6 5.5,Table 1-1) r o,Y Building Category(I,II,III,or IV)_ - 0m 2 Wall 2 �= Eave Height,He= 17.33 feet g Max Building Height or Ridge Height above ground level,Hr= 21.00 feet Height Parapet Height above ground level,Hp= 30.00 feet Building Width Perpendicular to Wind,B= 515.00 feet(max bldg dim) W Building Width Parallel to Wind,L= 202.00 feet Enclosed, or Partially Enclosed Building= E'..E,P(Section 6.5.9) REFER TO FIGURE 6-6 Gabled,Multispan,Monosloped,or Sawtooth Roof= i -G(G,MG,MS,or S) Angle of Plane of Roof From Horizontal,6= '1.118_degrees Tributary Area for Wall Components,1= _,100.square feel Tributary Area for Wall Components,2= 200 square feet Tributary Area for Wall Components,3= '"=Q1 square feet Tributary Area for Parapet Components,1= 50 square feet Z Tributary Area for Parapet Components,2= 100 square feet Tributary Area for Roof Components,1= 10.square feet _ x(upwind) I x Tributary Area for Roof Components,2= 36:square feet Tributary Area for Roof Components,3= 100 square feet Tributary Area for Overhangs or Canopies,1= 10 square feet V(z) I = 50 square feet Tributary Area for Overhangs or Canopies,2= q Lh_I Is building on or near a hill,ridge,or escarpment? N(Y or N)(Section 6.5.7.1) I--'--` Height of Hill or Escarpment relative to upwind terrain H= 10,00 feet(Sect 6.5.7,Fig.6-4) Honz.Dist Upwind to Point Where Elevation-H/2 Lh __10100 feet(Sect 6.5.7,Fig.6-4) Honz.Dist.from Crest to Building Site,x= 10.00 feel(Sect 6.5.7 Fig,64) 20 Ridge,2D Escarpment,or Axisymmetrical Hill= .E,(R,E,or H) Is the building site upwind or downwind of the crest? DOWN(up,down) 2-D Ridge or Axisymmetrical Hill 2.Calculations-Main Wind Force Resisting System Mean roof height,h= 17.33 feet REFER TO FIGURE 6-4 Kz,velocity pressure exposure coefficient at hz=21ft= 0.91 Table 6-3 (use with qz) Kz,velocity pressure exposure coefficient at hh=17.33ft= 0.87 Table 6-3 (use with qh) Kz,velocity pressure exposure coefficient at hp=30ft= 0.98 Table 6-3 (use with qp) Kzt,topographic factor at hz=21 It= 1.00 Fig.6-4 (use with qz) Kzt,topographic factor at hh=17.33ft= 1.00 Fig.6-4 (use with qh) Kzt,topographic factor at hp=30ft= 1.00 Fig.6.4 (use with qp) Kd,wind directionality factor= 0.85 Table 6-4 I,importance factor= 1.00 Table 6-1 G,gust factor= 0.85 Section 6.5.8.1 qz,velocity pressure at hz=21h= 16.04 psf(Eq.6-15) qh,velocity pressure at hh=17.33ft= 15.33 psf(Eq.6-15) dip,velocity pressure at hp=30ft= 17.27 psf(Eq.6-15) Walls: P=q(GCpf-GCpI) Eqn.6-17 qz GCp GCpI P Windward pressure 16.04 0.68 10.9 psf qh GCp GCpI P Leeward Pressure 15.33 -0.43 -6.5 psf Sidewall pressure 15.33 -0.60 0.18 -11.9 psf Internal Pressure 15.33 0.18 2.8 psf Windward+Leeward Pressure 10.91 psf+6.52 pat= 17.4 psf Parapets: Pp=gp(GCpn) Eqn.6-20 qp GCp Pp Windward parapet pressure 17.27 1.5 25,9 psf Leeward parapet pressure 17.27 -1.0 -17.3 psf Windward+Leeward Pressure 17.27 2.50 43.2 psf Roof Normal to Ridge(0a10 degrees) qh GCp GCPI P Windward Pressure case 1 15.33 -0.60 0.18 -11.9 psf case ii 15.33 -0.15 0.18 -5.1 psf Leeward Pressure 15.33 -0.26 0.18 -6.7 psf Roof All Other Conditions qh GCp GCpI P For 0 to h/2=0 ft to 8.87 ft 15.33 -0.77 0.18 -14.5 psf h12 to h=8.67 It to 17.33 it 15.33 -0.77 0.18 -14.5 psf h to 2h=17.33 ft to 34.66 ft 15.33 -0.43 0.18 -9.3 psf >2h=>34.66 It 15.33 -0.26 0.18 -6.7 psf Roof Overhangs Section 6.5.11.4 qh GCp GCpI P Maximum pressures 15.33 -0.77 0.68 -22.2 psf . ` wa/Z a ce ����K��� ��K������� ��v�v���— CHECK DATE: 4/1015 To: City ofNorthampton Building Department 212 Main Gt.. Pucha|xki Municipal Bldg. Northampton, MAO1OOO pnowE: 413.5871240 FAX: 413.5871272 ATTw: Chuck Miller,Asst. B|dACommissioner EMAIL: pRCuECT:# 1510132 VVahnurt Remodel(Store#2SO1)—Northampton, Massachusetts e,� PHONE w8/T OTHER T|Me� 2:45mnCGT ITEM Ds3Cn|pT0N RESPONSE 1 GOVERNING CODE A. Building Code: 2009 IBC—International Building Code P. Local Amendments: 8th Ed. Massachusetts State Building Code C. Structural Observations Required? D. Special Inspections Final Report Required for Certificate ofDcnuponuv? z-noOFuvsLOAo A. Minimum Roof Live Load: 20 pof a, SNOW LOAD . A. Ground Snow Load, Pg: 40 psf B, Can ground snow load be reduced per code: Yes 4, WIND LOAD A. Design Wind Speed: 90 mph B. Occupancy Category U a, SBSM|CLOAo A. Mapped Spectral Response Acceleration. Ss: 22.0% (oho��ohod. O2n) " ' . R. Mapped Gpucba| Response Aoce|emhnn. S1: 6.6% (long par�d. 1.Oa)r ., a FROST DEPTH r` Minimum Bearing Depth: 48 in. nEwmnxS: Please notify the undersigned if the above information im incorrect or incomplete. FROM: Beth Fnniu. P.E. Wallace Engineering ' Suurmm|cpn,u|unts,Inc. CC: um East Mathew Brady ume Fu|u.nklaxoma/4m3 ym.5u4susu.Fax mo.*w.m8o Wallace WALMART STORE NO. 2901 NORTHAMPTON, MASSACHUSETTS PROJECT NO. 1510132 STRUCTURAL CALCULATIONS IH OF MASCO THOMAS W. yG WALLACE o STRUCTURAL No.34690 QNA G ✓�,� THOMAS W. WALLACE, P.E. ENGINEER OF RECORD Wallace Engineering Structural Consultants,Inc. 200 East Mathew Brady Street Tulsa,Oklahoma 74103 918.584.5858,800.364.5858 www.�vallacesc.com In the equations below, the equation number corresponding to the 2006 edition is listed first, and that corresponding to the 2009 edition is listed second. Equation (16-37; 16-36): SMs = F,Ss = 1.600 x 0.224 = 0.358 g Equation (16-38; 16-37): SN,1 = F„S1 = 2.400 x 0.066 = 0.159 g Section 1613.5.4 — Design spectral response acceleration parameters Equation (16-39; 16-38): Sps = 2/:3 Sr,s = Z/ x 0.358 = 0.239 g Equation (16-40; 16-39): SDI = 2/3 Sh,l = Z/ x 0.159 = 0.106 g Section 1613.5.3 - Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters TABLE 1613.5.3(1) VALUES OF SITE COEFFICIENT Fa Site Class Mapped Spectral Response Acceleration at Short Period SS <_ 0.25 SS = 0.50 Ss = 0.75 S5 = 1.00 SS >_ 1.25 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 F See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of SS For Site Class = D and SS = 0.224 g, Fa = 1.600 TABLE 1613.5.3(2) VALUES OF SITE COEFFICIENT F, Site Class Mapped Spectral Response Acceleration at 1-s Period S, :50.10 S, = 0.20 S, = 0.30 S, = 0.40 S1 >_ 0.50 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.7 1.6 1.5 1.4 1.3 D 2.4 2.0 1.8 1.6 1.5 E 3.5 3.2 2.8 2.4 2.4 F See Section 11.4.7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S, For Site Class = D and S. = 0.066 g, F„ = 2.400 � GS Design Maps Detailed Report 2006/2009 International Building Code (42.3414 1N, 72.6439°W) Site Class D - "Stiff Soil", Occupancy Category I/II/III Section 1613.5.1 — Mapped acceleration parameters Note: Maps in the 2006 and 2009 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.5.3. From Figure 1613.5(1) Ss = 0.224 g From Figure 1613.5(2) IZ) S1 = 0.066 g Section 1613.5.2 — Site class definitions SITE SOIL Soil shear wave Standard penetration Soil undrained shear CLASS PROFILE velocity, vs, (ft/s) resistance, IY strength, s,,, (psf) NAME A Hard rock vs > 5,000 N/A N/A B Rock 2,500 < vs <_ 5,000 N/A N/A C Very dense 1,200 < vs <_ 2,500 N > 50 >2,000 psf soil and soft rock D Stiff soil 600 5 v < 1,200 15 _ N < 50 1,000 to 2,000 psf profile E Stiff soil vs < 600 N < 15 <1,000 psf profile E — Any profile with more than 10 ft of soil having the characteristics: 1. Plasticity index PI > 20, 2. Moisture content w ? 40%, and 3. Undrained shear strength s„ < 500 psf F — Any profile containing soils having one or more of the following characteristics: 1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils. 2. Peats and/or highly organic clays (H > 10 feet of peat and/or highly organic clay where H = thickness of soil) 3. Very high plasticity clays (H > 25 feet with plasticity index PI > 75) 4. Very thick soft/medium stiff clays (H > 120 feet) � � For SI: 1ft/s = 0.3048 m/s 1lb/ft2 = 0.0479 kN/mz_. 'USGS Design Maps Summary Report User-Specified Input Report Title #2901 Fri August 22, 2014 18:20:5; UT C. Building Code Reference Document 2006/2009 International Building Code wiich utilizes USGS hazard data available in 2002) Site Coordinates 42.3414°N, 72.6439°W Site Soil Classification Site Class D - "Stiff Soil" Occupancy Category I/II/III 2mi 5000-1ZIP, .:_ Williamsburg y� Bistive Vill Hatfield 6Amherst iH South Amherst H A M E N �rthampton tl l f F , 66 tTl {X S ' rx 0201,111 tat MaapQuest USGS-Provided Output SS = 0.224 g SMS = 0.358 g SDS = 0.239 g S, = 0.066 g SM, = 0.159 g Sp, = 0.106 g MCE Response Spectrum Design Response Spectrum U.36 0.24 0.32 0.21 0.28 0.18 0.24 pi p1 0.15 0.20 to 0.1 W 0.1 0.09 01' 0.08. 1 0.06 0.04 0.03 0.00 i i i i i i 1 0.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.80 2.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Period, T(sec) Period, T(sec) Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge. Seisan Design _ Rack D 1403002901 52 a 52 P�— Northampton,MA-#2901 IBC 2009/ASCE7-05/2008RMI(ANSI/MH16.1-08) H/2 X—X H/2 MAV 04/14/15 Punching Shear Check: (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(Pj= 2978 Ibs Max Vertical Load(ASD)-RMI,sect 2.7-LCit4: Slab thickness(t)= 5 in. Slab Concrete fc= 3500 psi - = P=(1+0.1lSm)DL+(3/4)[(1+0.14Sm)PL+(0.7)EL] ad° _ c .. Sos= 0.239(lp=1) Rack Post X-X= 5 in. i a DL=(Frame Wt/2)= 125 Ibs Rack Post Y-Y= 3.75 in. I (J (� 1 r PL=E(Shelf Load h,-hs)/2= 2400 Ibs bo= 37.50 in. EL=Mo1,poi[((0.7)(D))= 668 Ibs B= 1.33 ° a \ P= 2223 Ibs<-_At Each Post Vn= 36975 lbs Eq.(22-10) V„max= 29506 Ibs Eq.(22-10) _-c Max Vertical Load(LRFD)-RMI,sect 2.2-LC#5: QV„= 17704 Ibs by P=(1.2+0.2Sos)DL+(0.85+0.2Sos)PL+EL VAVn= 0.168<1.0 O.K. (Punching Perimeter) P = 2978 lbs<_-At Each Post Slab tension based on Soil bearing area check: zo. REAM FIXED AT Oil'END,FREE 10 DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf ROTATE AT OTHER--UNIFORMLY DISTRIBUTED LOAD Max.Service Vertical Load(P)= 2223 Ibs Area reqd.for bearing(A„,)= 1.48 ft° ,y" �r Tot.l fqufv U-if—L.- _ . 'b'distance= 14.61 in iC s ^-v . , . . ml Slab thickness(t)= 5.00 in `a v, . .. .. S=(1")(t)2/6= 4.17 in'/in ' ! m°,,.,� } _ 4M.,(tension allowable [( ) ]• = 1109.26 in-Ib/in .... =b,7.5' f�'rs S i snra l:'i i V m, �s:s.n...c.�•ra� ^� ...,.. Factored uniform bearing,w„=P„/Amqd= 13.95 Ibfinfn Srst M„=wL2/3=(w„)[(b-min(X-X,Y-Y))/2)2)/3= 137.14 in-lb/in-Defl.End M1=69 in-lb/in m TT77 +. r MAMi1= 0.124<1.0 O.K. EI Rack FOS Overturning with Resistance from Effective Weight of Slab on Grade: f v Width of Single Rack= 24 in Slab thickness(t)= 5.0 in Modulus of Rupture,f,=7.5•SDRT(fc)= 443.7 psis Concrete Slab Section Modulus,S=b(t)2/6= 50.0 iris/ft Allowable Concrete Slab Bending Moment,M./FS=S'f,/1 5= 1232.5 ft•lbs/fl Effective Cantilever Span Length(Ij at Mw= 6.3 it ( '`" L I`_ Total Length of Slab(1,+Width of Single Rack)= 8.3 ft G >1 1 L E tL E `_ID Trib.Width of Slab=Trib width of Rack= 8.0 ft s 1,! I ",!_ �. # Weight of Concrete Slab at Rack(P_)= 4140.1 Ibs t 7 Resisting Moment-Concrete Slab at Rack,Mas*Imci=P.•122= 205684 in'Ibs Load Combination#t: Mo.= 7516 in•lbs MasrRmoq+ MnslcyPel= 247276 in'Ibs - - -- ' = Total Overturning FOS= 32.898 OK Load Combination fit: Mot= 4226 in•Ibs -.. Masll-1+Masrca.el= 205684 in•Ibs -- ._...... Total Overturning FOS= 48.667 OK Seismic Rack D Seismic Design Protect No. Sheet N. Of Rack D 1403002901 51 52 Supported on Elevated Floor(Y1N): No Pmject Name: Northampton,MA-#2901 Seismic Importance Factor(Iv)= 1.0 <---No Public Access Allowed(Typ.at Back Stockroom/Grocery Storage Areas) Made By Dara MAV 04114115 Checked By. DaEe: IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Max.Weight per level(2 Pallets I shelf)= 1200 Ibs/shelf Weight of Unit= 250#<---Shipping weight per Manuf. Rack Trib width(CL-to-CL of frames)= 95 in Total Shelf Load �z" hs= 0 in 0 lbs 71 9 hs= 0 in 0 lbs _...._ i .............. �.1 .._.._..._ w.......y........ hT= 0 in 0 Ibis he= 0 in O lbs ,_._.. ._..... ._... ....... ......... - t hs= 0 in 0 lbs h,= 36 in 1200 lbs (L 2 hs= 36 in 120011 h2= 36 in 12001bs PLAN VIEW ht= 12 in 1200 lbs Total Shelf Height,H,= 120 in Unit Height,H„= 120in "LD" - 24"0 ,. 1:10- HIGH ',4 4 I_w`+'Ei. Unit Base Depth,D= 24 in 7i t Load Case 1'(Load=ease vet RMI eaot 28.6) Load Case 2'(toad Par RMI eea.2.68) ed Seismic(CJ(Ip)= 0.043 W.(Braced) Seismic(C.)(IP)= 0.043 W.(Braced) 0.011 W,(Down Aisle) 0.011 W.(Down Aisle) f g j ii W,=0.67[(0.67)PL]+DL= 2404.7 lbs W,=0.67[(1)PL]+DL= 1054.0 lbs §k - Base Shear,V=C,IPW,= 1012 Ibs(Braced) Base Shear,V=C,IPW,= 45.2 lbs(Braced' s ,s 253 lbs(Down Aisle) 11.3 Ibis(Down Aisle) + Horizontal forces/level,F,=C„,V(RMI sect 26 6) Horizontal forces/level,F.=C„,V(RMI sea z 68) i (Service Loads,E=0.7) Fs= 0.0 lbs @ 0 in(CM) (Service Loads) Fs= 0.0 lbs Note: Fa= 0.0 Ibis @ 0 in(CM) Fa= 0.0 lbs (CM)=Product Center of Mass F2= 0.0 lbs @ 0 in(CM) Fr= 0.0 lbs ! I)7 < typically 20 inches above Fs= 0.0 Ibs @ 0 in(CM) Fe= 0.0 Ibis ? y _._._.... ._....__..__.._.._........._...__._._......_..._-_.., ..,I_.......� the top of shelf at each level. Fs= 0.0 Ibis @ 0 in(CM) Fs= 0.0 lbs i 12 _ -- I 98 F,= 28.9 lbs @ 144 in(CM) F,= 29.1 Ibs @ 140 in(CM - Fs= 20.4 lbs @ 102 in(CM) F,= 0.0 lbs F,= 13.2 Ibis @ 66 in(CM) Fz= O.0 lbs F,= 6.0 lbs @ 30 in(CM) F,= 0.0 Ibs F.= 3.7 Ibis @ 60 in(CM) F„= 2.6 Ibis @ 60 in(CM) D..= 103.2 Ibis(@ Factored Loads) Yu 45.2 Ibis(@ Factored Loads) Calculate Overturning Moment(Service),Mot=Ff;h; Calculate Overturning Moment(Service),Mor=Yfh; Note: Per ANSI MH16.1:2008 12008)Section 6.3, M_= 7516 in-lbs Mor= 4226 in-lbs effective lengths may be determined by rational methods Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST consistent with AISI or AISC.AISC Design by Second-Order MRST= 41592 in-lbs MRST= 17400 in-lbs Analysis,Section C2.2a is used. Notional bads are applied to gravity load cases and K=1.0 is used since the ratio of Factor of Safety Factor of Safety second-order drift to first-order drift i FOS=5.53 FOS=4.12 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 �'"'"yr R.= 36 lbs 16 lbs 9 Ry= 0 lbs 0 lbs �„ '" �� } -t•it",^ :' - Overtumin FOS= 5.534>=1.5 4.117>=1.5 a Sliding Restraint,RRST/FOS=379lbs/10.487>=1.5 OK 176lbs/11.1>=1.5 OK Reactions(Factored Loads): LC#1 LC#2 ' Base Shear(R,)= 52 lbs 23 lbs �C - Net Uplift(1= 0 lbs 0 lbs; Overturning Gravity(P„)= 2978 lbs 1070 11 Upright Post Type= UA a Anchor Design(using"Cracked Concrete"Properties) " Try:1/2"0 Powers Wedge-Bolt+Screw Anchor 2 1/2"embed. Embedment= 2.5 in - f�= 3500 psi en.= 1.875 in<_--Eccen.Of Anchor c 5 n hy= 1.65 in 1.51=2.5in 'e'( Conc.thickness,I= 5 in , v�_ - #of Anchors,n= 1 Sx= 0 in Sy= 0 in Shear Allowables A_= 0.168 in' Steel Strength(i= 3591 lbs<-ACI 318-08 Eq D-20 Tension Allowables Concrete breakout Y dir.(0.75)-0V,ea= 1283 Ibis<--ACI 318-08 Eq D-22 Steel Strength i= 8190 lbs<--ACI 318-08 Eq D-3 Concrete breakout X dir.Single(0.75)QV,ss= 1283 lbs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)0N,es= 591 lbs<-ACI 318-08 Eq D-5 Concrete breakout X dir.(all anchors)(0.75)QV,be= 1283 Ibs<-ACI 318.08 Eq D-22 Pullout Strength i= 779 lbs<--ACI 318-08 Eq D-14 Concrete pryout pV_= 637 lbs<--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs(LC#1) 0 lbs(LC#2) LC#1 LC#2 MIN[pNsa,pNcbg,pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) Factored Shear Load(Vu): Braced= 52 Ibis 23 lbs max tension stress ratio(TSR)= 0.000 OK 1 0.000 OK(LC#2) Down Aisle= 13 lbs 6 Ibis Combined shear and tension stress ratio: max shear stress ratio(VSR): Braced= 0.081 OK 0.036 OK Braced(TSR+VSR<=1.2)= 0.081<=1.2 OK-LC#1 Controls Down Aisle= 0.020 OK 0.009 OK Down Aisle(VSR<=1.0)= 0.020 OK-LC#1 Controls USE: (1)1/2"0 Powers Wedge-Bolt+Screw Anchor 2 1/2"embed. ICC REPORT#ESR-2526 Seismic Rack D Seismic Design Rack C 1403002901 50 52 Pn.r.+wm. Northampton,MA-#2901 IBC 2009/ASCE 7-05 If 2008 RMI (ANSI/MH16.1-08) H/2 X—X H/2 MAV 04/1415 Punching Shear Check: (Design per section 22.5.4 ACI 318-08) CV Max.Factored Vertical Load(P,)= 5468 Ibs Max Vertical Load(ASD)-RMI,sect 2.1-LC#4: Slab Concrete Pc= 3500 psi I _ P=(1+0.11Sm)DL+(314)[(1+0.14SO)PL+(0.7)EL] Slab thickness(t)= 5 in. e4. e a, �- SOs= 0.239(lp=1) Rack Post X-X= 5 in. I a I DL=(Frame Wt/2)= 125 Ibs Rack Post Y-Y= 3.75 in. I - ( (�': ) PL=E(Shelf Load h,-h9)/2= 5000 Ibs b,= 37.50 in. I _ _ (V EL=MOT,/((0-7)(D))= 824 Ibs (t= 1.33 1 d 4 . \ P= 4293 Ibs<___At Each Post V�= 36975 Ibs Eq.(22-10) L . �4 _ V„max= 29506 Ibs Eq.(22-10) > Max Vertical Load(LRFD)-RMI,sect 2.2-LC#5: mv„= 17704 lbs b0 P=(1.2+0.2S_)DL+(0.85+0.2S_)PL+EL V„/`1`V„= 0.309<1.0 O.K. (Punching Perimeter) P.= 54681bs<—Al Each Post Slab tension based on Soil bearing area check- 11 11FAM: FIxED AT ONE ENO,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Max.Service Vertical Load(P)= 4293 Ibs Area r eq d.for bearing(A»)= 2.86 ft' � « r o.i eon unuwm Luw "b"distance= 20.30 in "°v - .r Slab thickness(t)= 5.00 in - S=(1")(t)�/6- 4.17 WAIT n,ee wr'. 4M,n(tension allowable)=0,7.5'[(f j`]-S= 1109.26 in-1b/in cti- m -a.. Factored uniform bearing,w„=P„/A„ye= 13.27 Iblin/in M„=wL�/3=(w,)[(b-min(X-X,Y-Y))12)21/3= 302.88 in-lb/in-Dell.End M1=152 in-lb/in +- :- z+ m. "4 MAW, 0.273<1.0 O.K. >, R+EI Rack FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 44 in - \\ Slab thickness(t)= 5.0 in Modulus of Rupture,f,=7.5'SCRT(Pc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)2!6= 50.0 W/fl Allowable Concrete Slab Bending Moment,Md1FS=S'f,l1 5- 1232.5 ft'Ibs/ft Effective Cantilever Span Length(I.)at M,i= 6.3 ft Total Length of Slab(1,+Width of Single Rack)= 9.9 R f' I L_E '. - Trib.Width of Slab=Trib width of Rack= 8.0 it < I t Weight of Concrete Slab at Rack(Pw„j= 4973.4 Ibs r#� Resisting Moment-Concrete Slab at Rack,MRSTwro1=P_'h/2= 296819 in•lbs s,.. N F. Load Combination#1: MOT= 16986 in'Ibs MRSTIR.uq+ MRSrr.ve>= 449719 in'Ibs Total Overturning FOS= 26.476 OK Load Combination#2: MOT= 14963 in'Ibs -- - Masri�q+Masriawel= 296819 in'Ibs - Total Overturning FOS= 19.837 OK Seismic Rack C Seismic Design Project N. Sheet NO' Ot: Rack C 1403002901 49 52 Supported on Elevated Floor(Y/N): No Project Name. Northampton,MA-#2901 Seismic Importance Factor(Ip)= 1.0 <__No Public Access Allowed(Typ.at Back Stockroom/Grocery Storage Areas) Made ey: Dam. MAV 04/14/15 Checked 9y: Dam: IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Max.Weight per level(2 Pallets/shelf)= 5000 lbs/shelf Weight of Unit= 250#<_-Shipping weight per Manuf. Rack Trib width(CL-to-CL of frames)= 96 in Total Shelf Load ---ir-" 3-e4---- hg= 0 in 0 lbs }t } h n- - 0 in 0 lbs h,= 0 in 0 lbs he= 0 in O lbs hs= 0 in 0 lbs h,= 0 in 0 Ibs `} U ( ✓":.. hs= 0 in 0lbs ( .✓rte !�� h,= 60 in 5000 lbs _ _._..____.,""_,,.,. ,✓�_,.,,,,..,, ._ „,...._,..,...,,,, !_„_... ht= 60 in 5000Ibs -.w 'LAIC VIEW j Total Shelf Height,Ht= 120 in 44"D X .1 20" HIGH 4 2 LEVELS I Unit Height,H.= 120 in ` Unit Base Depth,D= 44 in ... Load Case 1'(Load gses per RMI sect 2.6 8) Load Case 2'(Load cases per RMI sect 28.8) $ \ 7 Seismic(CJ(Ip)= 0.043 W,(Braced) Seismic(CJ(Ip)= 0.043 W,(Braced) 0.011 W.(Down Aisle) 0.011 W.(Down Aisle) y t�.Thd�,(� LOAD ft=0.67[(0.67)PL]+DL= 4739.0 Ibs W,=0.67[(1)PL]+DL= 3600.0 lbs Cil' g, f,;P [EAM 0C.) Base Shear,V=Cj^= 203.4 Ibs(Braced) Base Shear,V=C,l^= 154.5 lbs(Braced) t i i 501 lbs(Down Aisle) 38.5 lbs(Down Aisle) gg Horizontal forces/level,F,=C�V(RMI sect 2,6 6) Horizontal forces/level,F.=C„V(RMI�26.6) (Service Loads,E=0.7) Fa= 0.0 lbs @ 0 in(CM) (Service Loads) Fs= 0.0 lbs A r Note: Fe= 0.0 Ibs @ 0 in(CM) Fe= 0.0 lbs S T-N`')A'R D [~sOAL, 4 (CM)=Product Center of Mass Fr= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs T('R BEAM i L/ � typically 20 inches above Fe= 0.0 lbs @ 0 in(CM) Fe= 0.0 lbs t. r n ` the top of shelf at each level. F5= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs DD x F,= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs { F,= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs tti Fz= 85.0 lbs @ 140 in(CM) F,= 105.9 lbs @ 140 in(CM ELEVATION ------" Ft= 54.7 lbs @ 90 in(CM) F,= 0.0 lbs F„= 2.7 lbs @ 60 in(CM) F„= 2.3 lbs @ 60 in(CM) D..= 203.4 lbs(@ Factored Loads) Dl= 154.5 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ifh; Calculate Overturning Moment(Service),MOT=Ifih; Note: Per ANSI MH16.1:2008(RMI 2008)Section 6.3, MOT= 16986 in-lbs MOT= 14963 in-lbs effective lengths may be determined by rational methods Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST consistent with AISI or AISC.AISC Design by Second-Order MRST= 152900 in-lbs MRST= 115500 in-lbs Analysis,Section C2.2a is used. Notional loads are applied to gravity load cases and K=1.0 is used since the ratio of Factor of Safety Factor of Safety second-order drift to first-order drift(P-6)/(P-A) 1.1. FOS=9.00 FOS=7.72 'Load cases are per ASCE 7-05 sect.15.5.3.2 ] , Reactions(Service Loads): LC#1 LC#2 `^""'.. F' ,1 S) R,= 71 Ibs 54 Ibs _ T - Fly- 0 lbs 0 lbs Overturning FOS= 9.002>=1.5 7.719>=1.5 Sliding Restraint,RRST/FOS=6891bs/9.675>=1.5 OK 5351bs 19.892>=LS OK Reactions(Factored Loads): LC#1 LC#2 '- £ Base Shear(R,)= 102 lbs 77 lbs Net U ift Ry = 0 lbs 0 lbs �- .t .., Overturning Gravity(P")= 5468 lbs 3126 lbs Upright Post Type= UA -- -f..,... 3 s 6- .�._._.-I ..x..: ..,_...a Anchor Design(using"Cracked Concrete"Properties) Try:1/2"0 Powers Wedge-Bolt+Screw Anchor 2 112"embed. Embedment= 2.5 in S s.. .. ," ..._. - -+.; i - ., .! ? .. f�= 3500 psi ! j an. 1.875 in<__Eccen.Of Anchor h„= 1.65 in 1.5(hd)=2.5 in L.- Conc.thickness,t= 5 in t #of Anchors,n= 1 Sx= 0 in Sy= 0 in Shear Allowables A„= 0.168 in' Steel Strength(0.75)�V„= 3591 lbs<_ACI 318-08 Eq D-20 Tension Allowables Concrete breakout Y dir.(0.75)OV tv= 1283 lbs<-ACI 318-08 Eq D-22 Steel Strength(0.75)+N,e= 8190 lbs<__ACI 318-08 Eq D-3 Concrete breakout X dir.Single(0.75),lV,bi= 1283 lbs---Act 318-08 Eq D-22 Concrete Breakout(0.75)mN.,= 591 lbs<__ACI 316-08 Eq D-5 Concrete breakout X dir.(all anchors)(0.75)pV�,= 1283 lbs<-ACI 318-08 Eq D-22 Pullout Strength(0.75)+Np"= 779 lbs<-ACI 318-08 Eq D-14 Concrete pryout oV_= 637 lbs<--Act 318-08 Eq 0-31 Factored Tension Load(N")= 0 lbs(LC#1) 0 lbs(LC#2) LC#1 LC#2 MIN[ipNsa,(pNcbg,c;Npn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brit9e Steel Reduction) Factored Shear Load(V"): Braced= 102 lbs 77 lbs max tension stress ratio(TSR)= 0.000 OK(LC#1) 0.000 OK(LC#2) Down Aisle= 25 lbs 19 lbs Combined shear and tension stress ratio: max shear stress ratio(VSR): Braced= 0.160 OK 0.121 OK Braced(TSR+VSR<=1.2)= 0.160<=1.2 OK-LC#1 Controls Down Aisle= 0.040 OK 0.030 OK Down Aisle(VSR<=1.0)= 0.040 OK-LC#1 Controls USE: (1)1/2"0 Powers Wedge-Bolt+Screw Anchor 2 1/2"embed. ICC REPORT#ESR-2526 Seismic Rack Seismic Design Rack B 1403002901 48 a 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) H/2 X—X H/2 MAV 04/14/15 ecew By J. Punching Shear Check: _ _____ ___ (Design per section 22.5.4 ACI 318-08) < 4 A 1 N Max.Factored Vertical Load(Pn)= 8131 Ibs Max Vertical Load(ASD)-RMI,sect 2.1-LC#4: Slab Concrete fc= 3500 psi I w P=(1+0.115 )DL+(3/4)1(1+0.14Ss)PL+(0.7)ELJ Slab thickness(t)= 5 in. i <Q - w ._ Soe= 0.239(lp=1) Rack Post X-X= 5 in. I �J - 4 DL=(Frame WV2)= 125 Ibs Rack Post Y-Y= 3.75 in. - °, �} {� 1 PL=E(Shelf Load ht-hs)/2= 7600 Ibs bo= 37.50 in. 1 - EL=MOT,Lcn/((0.7)(D))= 1152 Ibs 3= 1.33 1 I < a - I \ P= 6424 Ibs<---At Each Post V„= 36975Ibs Eq.(22-10) 1 w 1 _ Vn max= 29506 Ibs Eq.(22-10) w 4 Max Vertical Load(LRFD)-RMI,sect 2.2-LC#5: ov„= 17704 Ibs by P=(1.2+0.2SO)DL+(0.85+0.2SOs)PL+EL VJOVn 0.459<1.0 O.K. (Punching Perimeter) P = 8131 Ibs—At Each Post Slab tension based on Soil bearing area check: IG. REAM FIXED AT ONE E.NO,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf ROTATE AT OTHER—UNIFORMLY DiS/RIBUTED LOAD Max.Service Vertical Load(P)= 6424 Ibs ;,__..,___t , Area reqd.for bearing(A„.)= 4.28 ft' z lottl Egow.Unirwm Loan ` "V distance= 24.83 in '" I '_v v Slab thickness(t)= 5.00 in a v, . . _ . . . . _ S=( i")(W/6= 4.17 in'(n Mm tension allowable) - 1109.26 in-lb/in Factored uniform bearing,w„=P„/A_A= 13.18 Ib/in/in Mi M„=w03=(w„)((b-min(X-X,Y-Y))/2)2]/3= 488.38 irrlb/in-Defl.End M1=245 in-lb/in '-j-T • z - �-s ; °"' tl (wt awnwwtwa­d) MAMnt= 0.440<1.0 O.K. ..,.. � 2nEi`t Rack FOS Overturning with Resistance from Effective Weight of Slab on Grade: )1 Width of Single Rack= 44 in A _ \ h Slab thickness(t)= 5.0 in , Modulus of Rupture,f,=7.5'SDRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)'16= 50.0 in'/ft Allowable Concrete Slab Bending Moment,M,/FS=S'f,/1 5= 1232.5 ft'Ibs/ft Effective Cantilever Span Length(In)at M,= 6.3 ft V P "i F i Y Total Length of Slab(1,+Width of Single Rack)= 9.9 ft _ E t __1 \ t Tn Width dth of Slab=Trib width of Rack= 8.0 fl (�: r Weight of Concrete Slab at Rack(P_)= 4973.4 Ibs , ] Resisting Moment-Concrete Slab at Rack,MRSTtme)=P—*V2= 296819 in'Ibs �� $i Load Combination#1: MOT= 23763 in'Ibs : MRST(ww)+ MRST(—)= 526367 in'Ibs Total Overturning FOS= 22.151 OK Load Combination#2: MOT= 14963 in'Ibs _ - MRST(a,rx)+MRSTlerel= 296819 in'Ibs Total Overturning FOS= 19.837 OK Seismic Rack B Seismic Design Project N. Sheet No'. Or. Rack B 1403002901 47 52 Supported on Elevated Floor(Y/N). No Protect Name. Northampton,MA-#2901 Seismic Importance Factor(Ip)= 1.0 <---No Public Access Allowed(Typ.at Back Stockroom/Grocery Storage Areas) Made By bam. MAV 04114/15 Checked By Date. IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Max.Weight per level(2 Pallets/shelf)= 5000 lbs/shelf Weight of Unit= 250#<---Shipping weight per Manuf. Rack Trib width(CL-to-CL of frames)= 96 in Total Shelf Load ha= 0 in 0 lbs hs= 0 in 0 lbs h,= 0 in 0 lbs hs= 0 in 0 lbs hs= in 0 lbs •--w.lJ.n---- h,= 36 6 in 5000 lbs 1! h3= 36 in 3400 lbs :...-._.. -..... „✓.... It,= 36 in 3400 lbs h,= 12 in 3400 lbs W Total Shelf Height,HI= 120 in Unit Height,H.= 120 in PLAN Ww Unit Base Depth,D= 44 in "B" 44'D t; " ff1G1,1 0 4 £.O-"ELS Load Case 1'(Load cases Per RMI sec[2,6 8) Load Case 2'(Load cases par RMI sect 2.6.8) ------------ Seismic(Cj(lp)= 0.043 W,(Braced) Seismic(Cj(lp)= 0.043 W,(Braced) �]$y- a 0.011 W.(Down Aisle) 0.011 W,(Down Aisle) a ` r W,=0.67[(0.67)PL]+DL= 7073.3 lbs W,=0.67[(1)PL]+DL= 3600.0 lbs 1 & z Base Shear,V=C j^= 303.6 lbs(Braced) Base Shear,V=C,IpW,= 154.5 lbs(Braced) I..16- , 75.7 lbs(Down Aisle) 38.5 lbs(Down Aisle) , 5 i13 3 Horizontal forces/level,F,=C„V IRMI sect 2.6.6) Horizontal forces/level,F.=C„V(RMI-12 6 6) 3 4 (Service Loads,E=0.7) Fa= 0.0 lbs @ 0 in(CM) (Service Loads) Fe= 0.0 lbs Note: Fs= 0.0 lbs @ 0 in(CM) Fa= 0.0 lbs t ' (CM)=Product Center of Mass F7= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs _ -1 typically 20 inches above Fs= 0.0 lbs @ 0 in(CM) Fe= 0.0 lbs the top of shelf at each level. Fs= 0.0 lbs @ 0 in(CM) Fs= 0.0 lips F,= 108.1 lbs @ 144 in(CM) F,= 105.9 lbs @ 140 in(CM) F,= 52.1 lbs @ 102 in(CM) F,= 0.0 lbs F,= 33.7 lbs @ 66 in(CM) F,= 0.0 lbs F,= 15.3 Ibs @ 30 in(CM) F,= 0.0 lbs F„= 3.4 lbs @ 60 in(CM) F.= 2.3 lbs @ 60 in(CM) £f,= 303.6 lbs(@ Factored Loads) £f,= 154.5 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=7,4b, Calculate Overturning Moment(Service),MOT=Ef,h; Note: Per ANSI MH16.1:2008(RMI 2008)Section 6.3, MOT= 23763 in-lbs MOT= 14963 in-lbs effective lengths may be determined by rational methods Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST consistent with AISI or AISC.AISC Design by Second-Order MRST= 229548 in-lbs MRST= 115500 in-lbs Analysis,Section C2.2a is used. Notional loads are applied to gravity load cases and K=1.0 is used since the ratio of Factor of Safety Factor of Safety second-order drift to first-order drift P-b/ (P-A <1.1. FOS=9.66 FOS=7.72 i. 'Load cases are per ASCE 7-05 sect.15.5.3.2 [ _ Reactions(Service Loads): LC#1 LC#2 R,= 106 lbs 54 lbs R,= 0 lbs 0 lbs . ( •"•rc: - Overturning FOS= 9.660>=1.5 7.719>=1.5 Sliding Restraint,RRST/FOS=1019lbs/9.59>=1.5 OK 535lbs/9.892>=1.5 OK Reactions(Factored Loads): LC#1 LC#2 Base Shear(R,)= 152 lbs 77 lbs Net Uplift(R,)= 0 Ibs 0 Ibs Overturning+Gravity(P„)= 8131 lbs 3126lbs - ----7 ,- Upright Post Type= UA "i Anchor Design(using"Cracked Concrete"Properties) Try:1/2"0 Powers Wedge-Bolt+Screw Anchor 2 112"embed ' Embedment= 2.5 in .. s,: ,.. ..,... .,_... .. f.,= 3500 psi e,;= 1.875 in<-_Eccen.Of Anchor h,= 1.65 in 1.5(h,r)=2.5 int Conc.thickness,t= 5 in #of Anchors,n= 1 Sx= 0 i Sy= 0 in Shear Allowables A.= 0.168 in' Steel Strength(0.75)+V 3591 lbs--Act 3113-08 Eq D-20 Tension Allowables Concrete breakout Y dir.(0.75)+V�ba= 1283 lbs<_-ACI 318-08 Eq D-22 Steel Strength(0.75)+N,a= 8190 lbs<-ACI 318-08 Eq D-3 Concrete breakout X dir.Single(0.75)4Vpba= 1283 lbs-Act 318-08 Eq D-22 Concrete Breakout(0.75)+N,ba= 591 be<-ACI 318-08 Eq D-5 Concrete breakout X dir.(all anchors)(0.75)+Vpba= 1283 lbs<_-ACI 318-08 Eq D-22 Pullout Strength(0.75)+Np„= 779 lbs<--ACI 318-08 Eq D-14 Concrete pryout+Vppa= 637 lbs<-ACI 31B-08 Eq D-31 Factored Tension Load(Nu)= 0 lbs(LC#1) 0 lbs(LC#2) LC#1 LC#2 MIN[(pNsa,lpNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) Factored Shear Load(V,): Braced= 152 lbs 77 lbs max tension stress ratio(TSR)= 0.000 OK(LC#1) 0.000 OK(LC#2) Down Aisle= 38 lbs 19 lbs Combined shear and tension stress ratio: max shear stress ratio(VSR): Braced= 0.238 OK 0.121 OK Braced(TSR+VSR<=1.2)= 0.238-1.2 OK-LC#1 Controls Down Aisle= 0.059 OK 0.030 OK Down Aisle(VSR<=1.0)= 0.059 OK-LC#1 Controls USE: (1)1/2"0 Powers Wedge-Bolt+Screw Anchor 2 1/2"embed. ICC REPORT#ESR-2526 Seismic Rack B Pq t No. SAM No: q: Racking Anchorage Design 1403002901 as 5z P,q N. Northampton,MA-#2901 Store Latitude/Longitude Coordinates(per Google Earth): w By om. N 42°20'29" 42.341389 MAV 04/14/15 W 72'38'38" 72.643889 ce«k.d By D.,. IBC 2009 /ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Braced Dorn Aisle Response Modification Factor,R= 4.0 6.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,0,= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Cd= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= 11 IBC,Table 1604.5 Importance Factor,IP= 1.5 ASCE-7 Sect.15.5.3 0.2 Second Period Accel.,S.= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 F.= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F„= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 SM = 0.358 IBC eq.16-36,ASCE-7 eq.11.4-1 SM,= 0.158 IBC eq.16-37,ASCE-7 eq.11.4-2 Sos= 0.239 IBC eq.16-38,ASCE-7 eq.11.4-3 SW= 0.106 IBC eq.16-39,ASCE-7 eq.11.4-4 Seismic Design Category --based on Sos= B IBC Table 1613.5.6(1),ASCE-7 Table 11.6-1 --based on So,= B IBC Table 1613.5.6(2),ASCE-7 Table 11.6-2 Braced Down Aisle Period,T(H,.,k s 96")= 0.259 1.262 sec.-RMI sect.2.6.3 Period,T(96"<H,)= 0.615 1.645 sec.-RMI sect.2.6.3 C.(H.&:s 96")= 0.060 0.014 -->min[SDS/R,SD1 1((T)(R))] C,(96"<H,.ck)= 0.043 0.011 ->min[SDS/R,SD1/((T)(R))] C„min= 0.011 0.011 -->RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear: Braced Doom Aisle V(Hrack<96")=C.IpW.= 0.090 0.021 We RMI sect.2.6.2 V(96"<Hrack)=Cs]pWs= 0.064 0.016 W. RMI sect.2.6.2 LC#1: 1 ADL+1.2PL LC#2: 1.2DL+1.4PL LC#6a:(0.9-0.2SDS)DL+(0.9-02SDS)PL.,,+(1.0)EL <-EL and PL.PP=(0.67)PL at each shelf level 0.8522 DL 0.8522 PL,P, 1.0000 EL LC#6b:(0.9-0.2SDS)DL+(0.9-0.2SDS)PL.pp+(1.0)EL <---EL and PL,_(1.0)PL at top shelf only 0.8522 DL 0.8522 PL.P, 1.0000 EL LC#5:(1.2+0.2SDS)DL+(0.85+0.2SDS)PL+(1.0)EL 1.2478 DL 0.8978 PL 1.0000 EL Project No. SMet No: Or. Storage Rack Anchorage Design 1403002901 a5 5z Project Name. Northampton,MA-#2901 Store Latitude/Longitude Coordinates(per Google Earth): M. By oxe N 42e 20'29" 42.341389 MAV 04/14/15 W 72°38'38" 72.643889 cm"wed ay: m e IBC 2009 /ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Braced Doom Aisle Response Modification Factor,R= 4.0 6.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,Do= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Cd= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= II IBC,Table 1604.5 Importance Factor,Ip= 1.0 ASCE-7 Sect.15.5.3 0.2 Second Period Accel.,S.= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 F.= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F„= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 SMs= 0.358 g IBC eq.16-36,ASCE-7 eq.11.4-1 SM,= 0.158 g IBC eq.16-37,ASCE-7 eq.11.4-2 SDS= 0.239 g IBC eq.16-38,ASCE-7 eq.11.4-3 SD,= 0.106 g IBC eq.16-39,ASCE-7 eq.11.4-4 Seismic Design Category -based on SDS= B IBC Table 1613.5.6(1),ASCE-7 Table 11.6-1 --based on SDI= B IBC Table 1613.5.6(2),ASCE-7 Table 11.6-2 Braced Down Aisle Period,T(H,aok 5 96")= 0.259 1.262 sec.-RMI sect.2.6.3 Period,T(96"<H,ad,)= 0.615 1.645 sec.-RMI sect.2.6.3 Ca(H,ao,,5 9611)= 0.060 0.014 -->min[SDS/R,SD1/((T)(R))] C.(96"<H_,,)= 0.043 0.011 ->min[SDS/R,SDt/((T)(R))j Ca,min= 0.011 0.011 ->RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear: Braced Down Aisle V(Hrack 5 96")=CsIPWs= 0.060 0.014 Wa RMI sect.2.6.2 V(96"<Hrack)=CsIPWs= 0.043 0.011 Ws RMI sect.2.6.2 Load Combinations for LRFD Member Design(2008-RMI,Section 2.1): DL=Dead Load for RISA Frame analysis PL=Ma)dmum load from pallets or products stored on racks LC#1: 1 ADL+1.2PL EL=Seismic Load-RMI section 2.6.6-Vert.Distribution LC#2: 1 2D+1.4PL LC Na:(0.9-0.2SDS)DL+(0.9-0.2SDOPLapp+(1.0)EL <--EL and PLapp=(0.67)PL at each shelf level 0.8522 DL 0.8522 PL, 1.0000 EL LC#6b:(0.9-0.2SDs)DL+(0.9-0.2SDS)PLapp+(1.0)EL <---EL and PLapp=(1.0)PL at top shelf only 0.8522 DL 0.8522 PL, 1.0000 EL LC#5:(1.2+0.2SDs)DL+(0.85+0.2SDS)PL+(1.0)EL 1.2478 DL 0.8978 PL 1.0000 EL 78"Tall"8"5 Level 1403002901 as m s2 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14115 H/2 X—X H/2 Punching Shear Check: (Design per section 22.5.4 ACI 318-08) ____ Max.Factored Vertical Load(P„)= 1079 Ibs Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. >-Rack Post X-X= 2 in. ' Rack Post Y-Y= 2 in. a l r b.= 24.00 in. I P= 1.00 N V.= 22718 Ibs Eq.(22-10) i T • _ V.max= 151071bs Eq.(22-10) --- ---`---`T' mvn= .119< (Punching L Perimeter) V,/pVn= 0.119<1.0 O.K. Slab tension based on Soil bearing area check: I n- BEAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= ROTATE AT OT1}ER--UNIFORMLY OIS;RIBUTED LOAD 1500 psf Max.Vertical Load(Service)(P)= 754 Ibs r --' Tors cq„L-u�RO.o,Load e Area reqd.for bearing(A.)= 0.50 ftr "b"distance= 8.51 in Slab thickness(t)= 4.00 in S=(1")(t)�/6= 2.67 ina/in r- J a" m Mn,(tension allowable) 710 in-1!X11 ^:a'- I- Factored uniform bearing,w„=P„/A„o= 14.92 Ib/iNin -e� "r> - - - - - e;r•--s.=y M.=w.L�/3=(-.)[(b-(2"))/2)2]/3= 52.62 in-lb/in-Deft End M1=27 in-lb/in °' L °_ , (.---"d) end) M omm= 0.074<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 18 in _ Slab thickness(t)= 4.0 in _ 4 Modulus of Rupture,f,=7.5•SQRT(fb)= 443.7 psi Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in'/ft 3 1 _._. Allowable Concrete Slab Bending Moment,M,=S'f,= 1183.2 ft•Ibs/ft --°° Effective Cantilever Span Length(L.)at M.= 6.9 ft 1 t 1 f J7 Total Length of Slab(In+Width of Single Rack)= 8.4 ft Trib.Width of Slab=Trib Wdth of Rack= 4.0 It Weight of Concrete Slab at Rack(P_)= 1676 Ibs Resisting Moment-Concrete Slab at Rack,MRST(—)=P.•L,/2= 84261 in•lbs i Load Combination#1: Mor= 2901 in•lbs f - MaeT(—)+ Mrssrlmey= 94206 in•lbs ! Total Overturning FOS= 32.469 OK _t Load Combination#2: MOT= 1472 in•Ibs Masrla..q+Mesrlme>= 87861 in•Ibs .. ..,..... �... Total Overturning FOS= 59.690 OK 30-8 PAR. 78"Tall"8"5 Level 1403002901 43 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No MAV 04/14115 Total Load per shelf= 150 Ibs-assumes(2)shelves per level we r #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 30.00 psf/sheN Weight of Unit= 100 If Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 15 in Total Shelf Load/Level I Frame hs= 0 in hs= 0 i h,= Din hs= 0 i h,= 18 in 300 Ibs - IT 18 in 300 lbs h3= 18 in 300lbs �•� � --� 1 hs= 18 in 300 Ibs h,= 6 in 300 Ibs Total Shelf Height,K= 78 in Unit Height,H.= 78 in _,.. t Unit Base Depth,D= 18 in Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2*(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(1,)= 0.090 W, Seismic(Cj(lp)= 0.090 We Total Wt,W,_(0.67)[0B7PL]+OL= 773.35 Ibs Total Wt,W._(0.67)[(i)PL]+D1_= 301 Ibs Base Shear,V=Cj^= 69.3 Ibs Base Shear,V=Cj^= 27.0 Ibs Horizontal forces per level,F,=C„V(RMI sect 26.6) Horizontal forces per level,F,=C,,,V(RMI sec[266) (Service Loads,E=0.7) F.= 0.0 Ibs @ 0 in(CM) (Service Loads) Fp= 0.0 IDs Note: Fe= 0.0 Ibs @ 0 in(CM) Fe= 0.0 Ibs (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F7= 0.0 Ibs .__..-._._..............._..._-_.__._...__.. _.- .._. ......_ ..._-_. typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fe= 0.0 Ibs ` the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) F4= 12.3 Ibs @ 66 in(CM) F,= 0.0 Ibs F3= 9.0 Ibs @ 48 in(CM) F3= 0.0 Ibs F,= 5.6 Ibs @ 30 in(CM) F,= 0.0 Ibs F,= 2.2 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.6 Ibs @ 39 in(CM) F„= 2.5 Ibs @ 39in(CM) If,= 69.3 Ibs(@ Factored Loads) If,= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If,h, Calculate Overturning Moment(Service),MOT=If,h, Check Single Frame I Bay Overturning Stability: MOT= 2901 in-Ibs Mc,= 1472 in-Ibs MOT(LC#1)= 2901 in-Ibs MRS,(LC#1)= 9945 in-Ibs Calculate Resisting Moment(Service),MRS, Calculate Resisting Moment(Service),MRS, FOS=MRS,/MOT= 1428-1.5-No AB Reqd MRST= 9945 in-Ibs MRST= 3600 in-Ibs MOT(LC#2)= 1472 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 3600 in-Ibs FOS=3.43 FOS=2.45 FOS=MRST/MOT= 2.446-1.5-No AB Reqd ->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads) LC#1 LC#2 R.= 24 Ibs 9 Ibs STEEi,-1:w- STRh�q 2:�A eh R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) 3. Lace 5TRA F At4C!<.R AT Overturning FOS= 3 428-1.5 2.446-1.5 rst x END v E GR r'aa..rES. Sliding Restraint force,RRsT I FOS=137lbs/5.648>=1.5 OK 58lbs 16.152-1.5 OK „yy,=Ry,_ rv. <,;n,o Reactions(Factored Loads): LC#1 LC#2 Base Shear(R,)= 35 Ibs 13 Ibs •i _ ;V4CNGR -t SO4TS P-4 I a SiRav A ,NpER€pR rRd Net Uplift(R,)= 0 Ibs 0 Ibs Aass Overturning+Gravity(P.)= 10791bs 371lbs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed - ` Embedment= 2.125 in f'p= 3500 psi }I.._. _.. �/ .... e,;= 0 in<_-Eccen.Of Anchor h.= 1.425 in 1.5(hp,)=2.25 in Conic.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)OV®= 3303 Ibs­-ACI 318-08 Eq D-20 Steel Strength(0.75)y N_= 10043 Ibs­ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)¢Vpsp= 1001 Ibs-ACI 31848 Eq D-22 Concrete Breakout(0.75)0 Ncsp= 1517 Ibs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)¢Vpsp= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)¢Npp= 1252 Ibs-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vc,= 1597 Ibs­ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)0V_= 1634 Ibs--ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vu)= 35 Ibs 13 Ibs MIN[,pNsa,tpNcbg,TNpnl/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30-8 P�Rn 84"Tall"Y 9 Level 1403002901 42 a 52 P-- Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14115 H/2 X—X H/2 Punching Shear Check: (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1290 Ibs Stab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. } Rack Post X-X= 2 in. °° I I Rack Post Y-Y= 2 in. a I r b.= 24.00 in. I (1= 1.00 Vn= 22718 Ibs Eq.(22-10) I = Vn max= 15107 lbs Eq.(22-10) ` --- -- --- 4Vn= 90641bs �b0 V,/il`Vn= 0.142<1.0 O.K. (Punching Perimeter) ZG. BL:AFA FIXED AT ONE END,FREE TO DEFLECT 'VERTICALLY BUT NOT Slab tension based on Soil bearing area check: ROTATE AT OTKH—UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psi Max.Vertical Load(Service)(P)= 896 Ibs ! i< "r -........._...` To:N fquPo.URaq„+,Li—I a Area regd.for bearing(A.)= 0.60 ft' P Ff--•° r n v _ Y� Kr "b"distance= 9.28 in Slab thickness(t)= 4.00 in :,.tatfl.M ana� . S-(1")(t)'l6= 2.67 in'/in �,, - r- --+-• �-' OM,„(tension allowable)=p,(7.5)[(f'�)'+'](S)= 710 in-lb/in j - '"• ('°"«�«<...°a} _.'.- v Factored uniform bearing,w„=P,/A_i= 14.99 Ibrin/in �`' • - - - - - s n-s.,r M„=w,L'13=(w„)[(b-(2"))/2)2]/3= 66.12 in-Ib/in-Deft.End M1=34 in-lb/in "" l„,.. „� -•*�•- �.c a.n.=..a�aa} zaEr T.-.'.. MAMn:= 0.093<1.0 O.K. r., _. - z:e Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 18 in f 1. f Slab thickness(t)= 4.0 in - Modulus of Rupture,f,=7 5'SQRT(fc)= 443.7 psi ; Concrete Slab Section Modulus,S=b(t)'/6= 32.0 in3/ft Allowable Concrete Slab Bending Moment,Mdi=S'f,= 1183.2 ft'Ibs/ft Effective Cantilever Span Length(L,)at Myi= 6.9 ft Total Length of Slab(1,+Width of Single Rack)= 8.4 ft Trib Width of Slab=Tnb width of Rack= 4.0 ft - f L i t Weight of Concrete Slab at Rack(P_)= 1676 Ibs Resisting Moment-Concrete Slab at Rack,MRST(mn)=P. L,/2= 84261 in'Ibs t Load Combination#1: MOT= 3539 in'Ibs - MRS r—)- MRST(,i,e)= 96015 in'Ibs 1 Total Overturning FOS= 27.132 OK ) � I Load Combination#2: MOT= 1188 in'Ibs --- --- MRSr(axq+ MRSr(.me)= 86961 in'Ib5 ._... ..... �... Total Overturning FOS= 73.224 OK 30-3 84"Tall"Y 9 Level 1403002901 ` 411, 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No o... MAV 04114/15 Total Load per shelf= 100 lbs<--assumes(2)shelves per level #of Levels= 9 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 20.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0'cc) Shelf depth(ea.side)= 15 in Total Shelf Load/Level/Frame hs= 9.5 in 200 lbs ha= 10 in 200 lbs hT= 9.5 in 200 lbs hs= 10 in 200 lbs hs= 9.5 in 200 lbs - _ - '°--"°-- h,= 10 in 200 lbs h,= 9.5 in 200 lbs I ] I hz= 10 in 200 lbs h,= 6 in 200 lbs I € Total Shelf Height,H,= 84 in �- Unit Height,H.= 84 in Unit Base Depth,D= 18 in ��y Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2"(Load cases per RMI sect.2.6.8(2)) - ----- -- ----'R �` -° _....... .._..- . .- ... _ C ....., ,,.... W Seismic(C,)(Ip)= 0.090 W. Seismc(CJ(Ip)= 0.090 W. - '- Total Wt,W,=(0.67)[0.67PL]+DL= 908.02 lbs Total Wt,W,=(0.67)[(1)PLI+DL= 234 lbs € •.?� Base Shear,V=C,IpW,= 81.4 lbs Base Shear,V=C,IpW,= 21.0 lbs, g ...,... .,�..� ------ ..-.-_..... _.__-_.... Horizontal forces per level,F.=C„,V(RMI sec[2 6.6) Horizontal forces per level,F.=C,„V(RMI sect 26 6) j _ .. (Service Loads,E=0.7) FS= 10.4 lbs @ 90 in(CM) (Service Loads) Fe= 11.9 lbs @ 90in(CM) Note: Fs= 9.3 lbs @ 80.5 in(CM) Fs= 0.0 lbs (CM)=Product Center of Mass FT= 8.2 lbs @ 70.5 in(CM) FT= 0.0 lbs typically 6 inches above F,,= 7.1 lbs @ 61 in(CM) F,= 0.0 lbs the top of shelf at each level. Fs= 5.9 lbs @ 51 in(CM) Fs= 0.0 lbs - F,= 4.8 lbs @ 41.5 in(CM) Fq= 0.0 lbs F,= 3.7 lbs @ 31.5 in(CM) F,= 0.0 lbs F,= 2.5 lbs @ 22 in(CM) Fz= 0.0 lbs F,= 1.4 lbs @ 12 in(CM) F,= 0.0 lbs F.= 3.6 lbs @ 42 in(CM) F„= 2.8 lbs @ 42in(CM) Ef,= 81.4 lbs(@ Factored Loads) Ef;= 21.0 lbs(@ Factored L08a) Calculate Overturning Moment(Service),MOT=Ef,h; Calculate Overturning Moment(Service),MOT=Ff,h, Check Single Frame I Bay Overturning Stability: Mor= 3539 in-lbs Mor= 1188 in-lbs MOT(LC#1)= 3539 in-Ibs MRST(LC#1)= 11754 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 3.321>=1.5-No AB Rebid MRST= 11754 in-lbs MRST= 2700 in-lbs MOT(LC#2)= 1188 in-lbs Factor of Safety Factor of Safety MRST(LC#2)= 2700 in-lbs FOS=3.32 FOS=2.27 FOS=MRST/MOT= 2.273>=1.5-No AB Rebid -->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 •• j R,= 28 lbs 7lbs STEEL adCtFR Rr= 0 lbs No Uplift) 0 lbs No Uplift) aYPr ar.2?Dt.they ( P ) ( P ) tc;esTRaaAaaheRSxT Overtuming FOS= 3.321>=1.5 2.273>=1.5 FA�H FKu FRAMC At106.1),.m. PRAX)AT INTERIOR fRAMPS- Sliding Restraint force,RRST/FOS=163lbs/5312>=1.5 OK 46lbs/6.234>=1.5 OK • '.rte TY- vroa Reactions(Factored Loads): LC#1 LC#2 Base Shear(R,)= 41 Ibs 10 Ibs ---r2:ANCHCR aOLTS PER ... ' •.. ,:� �.... STRAP AT INTER+OR FRAMES P ( )= Net Uplift RT 0 lbs 0 lbs Overturning+Gravity(P„)= 1290 lbs 293Ibs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+ScrewAnchor 2 118"embed. - Embedment= 2.125 in f-p= 3500 psi �........ .... ... e,;= 0 in<---Eccen.Of Anchor h,= 1.425 in 1.5(hp,)=2.25 in Conic.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)OV„= 3303 IDs<--ACI 318-08 Eq D-20 Steel Strength(0.75)QN,e= 10043 lbs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�Vprp= 1001 lbs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)ONppp= 1517 lbs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)¢Vpsp= 703 lbs<-ACI 318-08 Eq D-22 Pullout Strength(0.75)QNpn= 1252 lbs o--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)$Vpsp= 1597 lbs---ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)�V..= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(Np)= 0 lbs; 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vu)= 41 lbs 10 lbs MIN[WNsa,gNcbg,rpNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<11 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30-3 54"Tall"2"5 Level 1403002901 40 a 52 P�- Northampton,MA-#2901 .war IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV D4/14/15 H/2 X—X H/2 gar Punching Shear Check: i (Design per section 22.5.4 ACI 318-08) _ _ Max.Factored Vertical Load(P„)= 982 Ibs •^ 1 Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. } Rack Post X-X= 2 in. I } Rack Post Y-Y= 2 in. a I b.= 24.00 in. l l p= 1.00 a ° V,= 22718 Ibs Eq.(22-10) V„max= 15107 Ibs Eq.(22-10) -4-, _ AV„= 9064 Ibs VJ/V„= 0.108<1.00.K. (Punching Perimeter) Slab tension based on Soil bearing area check: '!- REAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY SLIT NOT Allowable soil bearing= 1500 psf , ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Max.Vertical Load(Service)(P)= 719 Ibs -- r -- a TVo..! -w uw.—Le Area re d.for bearin g(A,.0)= 0.48 f R a "b"distance 8.31 in Slab thickness(t) 4.00 in w r= .; S=(1")(t)2/6= 2.67 in"/in n..a �— r-- OM,.(tension allowable)=0,(7.5)[(f'�)`I(S)= 710 in-lb/in Factored uniform bearing,w„=P./A,= 14.22 lb/in/in ' ^r. - - - M.=w„LT/3=(w„)[(1b-(2"))/2)2)/3= 47.17 in-lb/in-Defl.End Mi=24 in-lb/in M.Wnt= 0.066<1.0 O.K. �l . . . NEIF Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 18 in %? Slab thickness(t)= 4.0 a Modulus of Rupture,i,=7.5'SC RT(fc)= 443.7 psi 1 Concrete Slab Section Modulus,S=b(t)'/6= 32.0 ina/ft ":z_' r._. I Allowable Concrete Slab Bending Moment,M,.=S'f,= 1163.2 ft'Ibs/ft Effective Cantilever Span Length(L.)at M,II= 6.9 ft Total Length of Slab(l.+Width of Single Rack)= 8.4 it Trib.Width of Slab=Trib width of Rack= 4.0 ft f --- Weight of Concrete Slab at Rack(P_)= 1676 Ibs I t Resisting Moment-Concrete Slab at Rack,MRST(—)=P_ L,/2= 84261 in'Ibs .3 Load Combination#1: MOT= 2077 in'Ibs - MRST(—)+ MRST(—)= 94206 in'lbs Total Overturning FOS= 45.358 OK "I i Load Combination#2: MOT= 1051 in'Ibs M—(—)+ MRST(—)° 87861 in'Ibs Total Overturning FOS= 83.561 OK -- 30-2 54"Tall"2"5 Level 1403002901 39 52 Northarrgrton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No s MAV 04/14/15 Total Load per shelf= 150 Ibs<---assumes(2)shelves per level e, #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 30.00 psf/shef Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 it(Frames are assumed to be 4'-O"oc) Shelf depth(ea.side)= 15 in Total Shelf Load/Level/Frame by= 0 in ha= 0 in h7= 0 in hs= 0 in hs= 12 in 300 Ibs h4= 12 in 300 Ibs - ` h,= 12 in 30011bs hz= 12 in 300 Ibs h,= 6 in 300 Ibs _ .. 'k-...... . Total Shelf Height,H,= 54 in Unit Height,H.= 54 in „. Unit Base Depth,D= 18 in Load Case 1`(Load cases per RMI sect.2.6.8(1)) Load Case 2*(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(Ip)= 0.090 W. Seismic(CJ(Ip)= 0.090 W, Total Wt,Ws=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,Ws=(0.67)1(1)PL]+DL= 301 Ibs Base Shear,V=C,I^ 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs i i Horizontal forces per level,F.=C„V(RMI sea 2.6.6) Horizontal forces per level,F.=ChV(RMI saa 2 s) t (Service Loads,E=0.7) Fg= 0.0 Ibs @ 0 in(CM) (Service Loads) Fs= 0.0 Ibs Note: Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs -- (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F7= 0.0 Ibis - typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs " the top of shelf at each level. Fs= 15.0 Ibs @ 60 in(CM) Fs= 16.4 Ibs @ 60in(CM) F4= 12.0 Ibs @ 48 in(CM) F4= 0.0 Ibs F,= 9.0 Ibs @ 36 in(CM) F,= 0.0 Ibs F,= 6.0 Ibs @ 24 in(CM) F,= 0.0 Ibs F,= 3.0 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.4 Ibs @ 27 in(CM) F„= 2.5 Ibs @ 27in(CM) If;= 69.3 Ibs(@ Factored Loads) Ff;= 27.0 Ibs(@ Factoredt.A8ds) Calculate Overturning Moment(Service),MOT=7f;h; Calculate Overturning Moment(Service),MOT=%f;h; Check Single Frame/Bay Overturning Stability: MOT= 2077 in-Ibs MOT= 1051 in-Ibs MOT(LC#i)= 2077 in-Ibs MRST(LC#1)= 9945 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 4388>=1.5-No AB Reqd MRST= 9945 in-Ibs MRST= 3600 in-Ibs MOT(LC#2)= 1051 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 3600 in-Ibs FOS=4.79 FOS=142 FOS=MRST/MOT= 3.424>=1.5-No AB Reqd -->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 •- R,= 24lbs 9lbs STSFL A.C40R TRAb 22G ftl R„= 0 Ibs(No Uplift) 0 Ibs(No Uplift) -,.� mLAGE e RAGA CHORSAT Overturning FOS= 4.788>=1.5 3.424>=1.5 FAH END ER,NIE 404,15-Ta .: R iX)AT i P7TERIOR FRAMES Sliding Restraint force,RRST/FOS=126lbs/5.175>=1.5 OK 52lbs/5.533>=1.5 OK � 1vi>t utio Reactions(Factored Loads): LC#1 LC#2 Y� •` Base Shear(R,)= 35 Ibs 13 Ibs ' -� ) Ss4APIMRiaCBiTS t fRRMEs Net Uplift(R,,)= 0 Ibs 0 Ibs ! ye. Overturning+Gravity(P.)= 982 lbs 322lbs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in f',= 3500 psi ....._ /._. e,;= 0 in<_-.Eccen.Of Anchor h„= 1.425 in 1.5(h„)=2.25 in Cone.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)mVm= 3303 Ibs<--ACI 318-08 Eq D-20 Steel Strength(0.75)�Nse= 10043 Ibs<_-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)OV,ps= 1001 Ibs<_ACI 318-08 Eq D-22 Concrete Breakout(0.75)ON,p= 1517 Ibs<_ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)0V,sp= 703 Ibs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)¢Np„= 1252 Ibs<-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)¢V.p= 1597 Ibs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OV,pp= 1634 Ibs<-ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V„)= 35 Ibs 13 Ibs MIN(cpNsa,rpNcbg,gNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30-2 90"Tall"X"9 Level 1403DO2901 38 IX 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04114/15 Punching Shear Check: H/2 X—X 1/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1114 Ibs Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. - Rack Post X-X= 2 in. <° I >- Rack Post Y-Y= 2 in. a l r 1 loo= 24.00 in. j I p= 1.00 ° ° I N V+= 22718 Ibs Eq.(22-10) V„max= 15107 Ibs Eq.(22-10) ` wn= 9064 Ibs �bo ----- VJOVn= 0.123<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I 'e" HEArv/FIXED AT GNE END,FREE TO DEFLECT VERTICALLY BUT NOT I Allowable soil bearing= 1500 psi ROTATE AT OTHER—UNIFORMLY DIS'RI8UTED LOAD Max.vertical Load(Service)(P)= 835 Ibs `` - - ° `""-", Tufai rquW.Unagnn Leaf - a Area reqd.for bearing(A.)= 0.56 ft P r n v "b"distance= 8.95 in &R Slab thickness(t)= 4.00 in S=(1")(t)216= 2 67 in/in MM tension allowable 7.5 f S - 710 in-lb/in Factored uniform bearing,w„=P„/A„qd= 13.90 Ib/in/in M.=w.013=(w)((b-(2'))12)'l/3= 55.97 in-lb/in-Deft.End MI=28 in-lb/in M L .=` ter+.+.. �.r a.n,+..e.r,d) mot* Mu/OMnt= 0.079<1.0 O.K. ..o.r, " . . . . . . . . °(+ Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 33 in Slab thickness(t)= 4.0 in - Modulus of Rupture,f,=7 5'SQRT(fc)= 4433 psi ; Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in'/ft - e Allowable Concrete Slab Bending Moment,Mdj=S'1,= 1183.2 ft'Ibs/ft -' °- •� Effective Cantilever Span Length(L.)at M.= 6.9 it I ' r � ii f Total Length of Slab(I,+Width of Single Rack)= 9.6 ft �- -'✓i�_. Trib.Width of Slab=Trib width of Rack= 4.0 ft Weight of Concrete Slab at Rack(P_)= 1926 Ibs �.. 1 Resisting Moment-Concrete Slab at Rack,MRSr(me)=P_ 4/2= 111275 in'Ibs Load Combination#1: M-= 3767 in'Ibs M-0.Lq+M—(—)= 132824 in'Ibs SS Total Overturning FOS= 35.257 OK Load Combination#2: M-= - oT' 1267 in'Ibs -.,. MRST(Rk)+M R (4) 116225 in'Ibs -- Total Overturning FOS= 91.745 OK _ -.--- 48X 90"Tall"X"9 Level 1403002901 37 52 '-- Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No o.e MAV 04/14/15 Total Load per shelf= 100 Ibs<__-assumes(2)shelves per level #of Levels= 9 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 12.50 psf/she" Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"ce) Shelf depth(ea.side)= 24 in Total Shelf Load/Level/Frame h,,= 10.5 in 200 Ibs h,,= 10.5 in 200 Ibs h,= 10.5 in 200 Ibs h,= 10.5 in 200 Ibs hs= 10.5 in 200 Ibs h,= 10.5 in 200 Ibs ' h3= 10.5 in 200 Ibs ( f h,= 10.5 in 200 Ibs h,= 6 in 200 Ibs Total Shelf Height,H,= 90 in .�`--`-- - - Unit Height,H.= 90 in Unit Base Depth,D= 33 in Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) ; a� -�-�������---------------- '- ' --- Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(I,)= 0.090 W. t Total Wt,W,=(0.67)[0-67PLI-DL= 908.02 Ibs Total Wt,W,=(0S7)[(1)PLj+DL= 234 Ibs Base Shear,V=C,I^= 81.4 Ibs Base Shear,V=C,IpW,= 21.0 Ibs 1 Horizontal forces per level,F.=Cy V(RMI sect 266) Horizontal forces per level,F.=CV(RMI sate 26.6) ,k- I (Service Loads,E=0.7) Fs= 10.5 Ibs @ 96 in(CM) (Service Loads) Fs= 11.9 Ibs @ 96in(CM) NOW Fs= 9.4 Ibs @185.5 in(CM) Fs= 0.0 Ibs (CM)=Product Center of Mass F7= 8.2 Ibs @ 75 in(CM) F7= 0.0 Ibs typically 6 inches above Fs= 7.1 Ibs @ 64.5 in(CM) FS= 0.0 Ibs the top of shelf at each level. Fs= 5.9 Ibs @ 54 in(CM) Fs= 0.0 Ibs F,= 4.8 Ibs @ 43.5 in(CM) F4= 0.0 Ibs F3= 3.6 Ibs @ 33 in(CM) F3= 0.0 Ibs F2= 2.5 Ibs @ 22.5 in(CM) F,= 0.0 Ibs - F,= 1.3 Ibs @ 12 in(CM) F,= 0.0 Ibs Fp= 3.7 Ibs @ 45 in(CM) - F.= 2.8 Ibs @ 45in(CM) EfI'= 81.4 Ibs(@ Factored Loads) if,= 21.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef;h, Calculate Overturning Moment(Service),MIT=Ffh; Check Single Frame/Bay Overturning Stability: MOT= 3767 in-Ibs MIT= 1267 in-Ibs MOT(LC#1)= 3767 in-Ibs MRST(LC#1)= 21549 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 5.720-1.5-No AB Reqd MRST= 21549 in-Ibs MRST= 4950 in-Ibs MIT(LC#2)= 1267 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 4950 in-Ibs FOS=5.72 FOS=3.91 FOS=MRST/MIT= 3.907-1.5-No AB Reqd -->No Anchorage Recid-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 - R,= 28 Ibs 7 Ibs y}j TRA.b( a 2 GA ek1 Ry= 0 Ibs(No Uplift) 0 Ibs(No Uplift) 3r LgLe STRAP A14CH: PLACE Overturning FOS= 5.720>=1.5 3.907>=1.5 EACH FMZ FRAME ANO k44x)AT 1N.T$R€OR.FRAMES. Sliding Restraint force,RRST/FOS=142lbs/4.988>=1.5 OK 39lbs/5.294>=1.5 OK - -yq, 't:.. Tv)x:QuO Reactions(Factored Loads). LC#1 LC#2 :.,.. SIS PER Base Shear(R,J= 41 Ibis 10 Ibs s S'C9aa A1RER�'AR FRAMES Net Uplift(RT)= 0 Ibs 0 Ibs Overturning+Gravity(P.)= 1114 lbs 2341bs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in t ri f'<= 3500 psi J/..._ � /..... JL -.. ... e,;= 0 in<_--Eccen.Of Anchor € h„= 1.425 in 1.5(h,)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection S4= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)+V„= 3303 Ibs<_-ACI 318-08 Eq D-20 Steel Strength(0.75)+N„= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)+V,,= 1001 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)+Ncsp= 1517 Ibs<-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)+V,Sp= 703 Ibs<-ACI 318-08 Eq D-22 Pullout Strength(0.75)+Np„= 1252 Ibs<-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)+Vpyp= 1597 Ibs<-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)+V,.= 1634 Ibs<--ACI 31 B-08 Eq D-31 Factored Tension Load(N")= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vp)= 41 Ibs 10 Ibs MIN[tpNsa,#Ncbg,VNpnj/Nu= 99.99>2.5-OK-IBC I CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 48X 78"Tall"V'5 Level 1403002901 36 a 52 Northampton,MA-#2901 .x sr — IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04114/15 H/2 X—X H/2 .acre. Punching Shear Check: (Design per section 22.5.4 ACI 31B-O8) Max.Factored Vertical Load(Pu)= 923 Ibs �� Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. °°° I '- Rack Post Y-Y= 2 in. bo= 24.00 in. i (3= 1.00 V�= 22718 Ibs Eq.(22-10) li = V,max= 15107lbs Eq.(22-10) ---- -- <---41 W.= 9064lbs �bo Vjiliy= 0.102<1.00.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I ZQ- HFAM FIXED AT ONE ENO,FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psf Max.Vertical Load(Service)(P)= 699 Ibs } ---- ) -----! r Tut"fquW.Umtarm Load -; Area reqd.for bearing(A,,,,)= 0.47 ft' -- "b"distance= 8.19 in Slab thickness(t)= 4.00 in m m.a. >tfiW.nd Wr' S=(1")(t)'/6= 2.67 in3/in OM,(tension allov.able)=Q7.5)[(f'b)"l(S)= 710 in-lb/in Factored uniform bearing,wu=Pu/A„0= 13.77 lb/in/in M= Mu=wuL'13=(wu)[(1b-(2"))12)2]/3= 43.94 in-lb/in-Defl.End MI=22 in-lb/in A° z t" •��•� (---d) ,nd) asEf. mdom t= 0.062<1.0 O.K. xaei'} Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 33 in _ Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5`SQRT(fc)= 443.7 psi t 1 Concrete Slab Section Modulus,S=b(t)'16= 32.0 03/11 Allowable Concrete Slab Bending Moment,M,i,=S'f,= 1183.2 ft'Ibs/R Effective Cantilever Span Length(Lu)at M,,= 6.9 It Total Length of Slab(1,+Width of Single Rack)= 9.6 It ` I 3 � ! •) !_ ' I Trib.Width of Slab=Trib width of Rack= 4.0 ft f Weight of Concrete Slab at Rack(P_,)= 1926 Ibs / Resisting Moment-Concrete Slab at Rack,MRSr(,rb)=Pte L,,12= 111275 in'Ibs J Load Combination#1: MOT= 2901 in'Ibs M—(—k)+MRsT(.b)= 129507 in'Ibs -,LIJ Total Overturning FOS= 44.636 OK 1 Load Combination#2: MOT= 1472 in'Ibs MRSr(R«q+ MRST(wb)= 117875 in`Ibs Total Overturning FOS= 80.080 OK 48V P� 78"Tail V'5 Level 1403002901 351- 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No MAV 04 114115 Total Load per shelf= 150 Ibs<_--assumes(2)shelves per level By one #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 18.75 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 R(Frames are assumed to be 4'-0-oc) Shelf depth(ea.side)= 24 in Total Shelf Load/Level/Frame he= 0 in hs= 0 in h7= 0 in hs= 0 in hs= 18 in 300 Ibs h,= 18 in 300 Ibs _ h3= 18 in 300 Ibs hz= 18 in 300 Ibs h,= 6 in 300 Ibs Total Shelf Height,H,= 78 in Unit Height,H.= 78 in Unit Base Depth,D= 33 in i Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismic(Cj(IR)= 0.090 Ws Seismic(C,)(I,)= 0.090 W, E Total Wt,W,=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W,=(0.67%1)P1-)+DL= 301 Ibs I Base Shear,V=C:IoW,= 69.3 Ibs Base Shear,V=C,I^= 27.0 Ibs Horizontal force s per level,F.=CV(RMI z ss) Horizontal forces per level,F.=C.=V(RMI sect 2.6.6) (Service Loads,E=0.7) Fe= 0.0 Ibs @ 0 in(CM) (Service Loads) Fs= 0.0 Ibs I Note: Fe= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fe= 0.0 Ibs " the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) F,= 12.3 Ibs @ 66 in(CM) F4= 0.0 Ibs F3= 9.0 Ibs @ 48 in(CM) F3= 0.0 Ibs F,= 5.6 Ibs @ 30 in(CM) F,= 0.0 Ibs Ft= 2.2 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.6 Ibs @ 39 in(CM) F.= 2.5 Ibs @ 39in(CM) If;= 69.3 Ibs(@ Factored Loads) If= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yf;h; Calculate Overturning Moment(Service),MOT=fifth, Check Single Frame/Bay Overturning Stability: MOT= 2901 in-Ibs MOT= 1472 in-Ibs MOT(LC#1)= 2901 in-Ibs MRST(LC#1)= 18233 in-Ibs Calculate Resisting Moment(Service),MRsT Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 6.284>=1.5-No AB Reqd MRST= 18233 in-Ibs MRST= 6600 in-Ibs MoT(LC#2)= 1472 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 6600 in-Ibs FOS=6.28 FOS=4.48 FOS=MRsT/MOT= 4.484>=1.5-No AB Reqd ->No Anchorage R -No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 - t7 R,= 24 Ibs 9 Ibs tGw?^AJGE sTEEL ANCU--R R,= 0 lbs No Uplift) 0 lbs No Uplift) STRAP( RAz2r"'h" ( P ) ( P ) ;� STRAP 5TRt2A JC 3RS Ar Overturning FOS= 6.284-1,5 4.484>=1.5 FA-CH END FRWrA AND 8.0'- Sliding Restraint force,RRST/FOS=1191bs/4.892>=1.5 OK 491bs/5.167-1.5 OK - .y# r�ro)A NTHRtGR aRna+cs. Reactions(Factored Loads): LC#1 LC#2 '. „ Base Shear(Rj= 35 Ibs 13 Ibs - t- czp AtacRaR sat-TS PER aal<s Net Uplift(RT)= 0 Ibs 0 Ibs 40 J S"RAP pr,N-E.R€Cra rxa Overturning+Gravity(Pu)= 923 Ibs 292 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. - •- Embedment= 2.125 in I f',= 3500 psi e,;= 0 in---Eccen.Of Anchor h„= 1.425 in 1.5(h,t)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection S,= 3.5 in Ase= 0.103 in2 Shear Allowables Tension Allowables Steel Strength(0.75)+V®= 3303 Ibs-ACI 318-08 Eq D-20 Steel Strength(0.75)ONm= 10043 Ibs<--ACI 318-08 Eq D3 Concrete breakout Y dir.(0.75)�Vuw= 1001 Ibs-ACI 318-08 Eq D-22 Concrete Breakout(0.75)�Nu,.= 1517 Ibs-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)mV,,= 703 Ibs<_-ACI 318-08 Eq D-22 Pullout Strength(0.75)0 Nm= 1252 Ibs-ACI 318-08 Eq 614 Concrete breakout X dir.Both anchors(0.75)�Vu,= 1597 Ibs,-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OV,,= 1634 Ibs c_-ACI 318-08 Eq 631 Factored Tension Load(Nu)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vu)= 35 Ibs 13 Ibs MIN[WNsa,cpNcbg,WNpn]/Nu= 99.99>2.5-OK-IBC i CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035 c 1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 48V 60"Tall"T"5 Level 1403002901 34' 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 H/2 X—X H/2 L.Punching Shear Check: (Design per section 22.5.4 AC1318-08) Max.Factored Vertical Load(P„)= 883 Ibs I Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in Rack Post X-X= 2 in ° } Rack Post Y-Y= 2 in bo= 24.00 in j I p= 1.00 ° V"= 22718 lbs Eq.(22-10) m j T V„Max= 15107 Ibs Eq.(22-10) ---- 4Vn= 9064lbs �bo --- < V,�mv�= 0.097<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I A, HEAkt FIXED AT ONE END,FREE TO DEFLECT VERTICALLY SUI NOT ROTATE AT OTHUR--UNIFORMLY DISSRIaUTED LOAD Allowable soil bearing= 1500 psf Max.Vertical Load(Service)(P)= 684 Ibs Tottl Fyol."umFO.m Ldad a Area regd.for bearing(A„,d)= 0.46 R' I--- i wt "b"distance= 8.11 in Slab thickness(t)= 4.00 in wr, M m.s,.(A d-4) . S=(1")(t)z/6 fire= 2.67 in3hn 4M,(tension allowable)=4,(7.5)[(f'.)"I(S)= 710 in-lb/in se.,.y` l I_ Factored uniform bearing,w„=P„/A_i= 13.44 Ib/in/in z-I - . - s M„=w.L/3=(w„)[(b-(2"))/2)'I/3= 41.76 in-lb/in-Dell.End Mt=21 in-lb/in M '° ..m+.. (:r e.nae.4 eod) . . - I' ,.` z of M„/OMn= 0.059<1.0 O.K. 1M°•• -. I,_.,,;, 2api Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 33 in ;-- Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)2 16= 32.0 in 3/ft Allowable Concrete Slab Bending Moment,M.=S'f,= 1183.2 R'Ibslfl Effective Cantilever Span Length(L.)at My,= 6-9 fl Total Length of Slab(�+Width of Single Rack)= 9.6 R Trib.Width of Slab=Trib width of Rack= 4.0 ft I ( Weight of Concrete Slab at Rack(P_)= 1926 Ibs " Resisting Moment-Concrete Slab at Rack,MRST(mb)=P_ Ld2= 111275 in'Ibs Load Combination#1: MOT= 2282 in'Ibs f} MRST(1-10+ MRSrld,q= 129507 in•lbs IM Total Overturning FOS= 56.758 OK Load Combination#2: Mor= 1157 in'Ibs ...... ..._. f3esr(a,,.a)+MRSr1mnl= 117875 in'Ibs -,,.... ,...., Total Overturning FOS= 101.917 OK 48T 60"Tall"T'5 Level 1403002901 , 331p 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No MAV 04/14/15 Total Load per shelf= 150 Ibs<___assumes(2)shelves per level -e, #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 18.75 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 24 in Total Shelf Load I Level I Frame he= 0 in hS= 0 in hr= 0 in he= 0 in hs= 13.5 in 300 Ibs h,= 13.5 in 300 Ibs h'= 115 in 300 Ibs .. ...- ... ...4- h,= 13.5 in 300 Ibs h = 6 in 300 I bs 'Y r. Total Shelf Height,H,= 60 in Unit Height,H.= 60 in Unit Base Depth,D= 33 in Load Case V(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(Ip)= 0.090 W. Seisr ric(Cj(lp)= 0.090 W, , .� m� Total Wt W,_(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W,_(0.67)[(1)PL]+DL= 301 Ibs Base Shear,V=C,I^= 693 Ibs Base Shear,V=Cj^= 27.0 Ibs Horizontal forces per level,F,=C„V(RMI sea zss) Horizontal forces per level,F.=C„V(nhe S-r zss) - (Service Loads,E=0.7) Fp= 0.0 Ibs @ 0 in(CM) (Service Loads) F,= 0.0 Ibs Note: F5= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs ` (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) Fr= 0.0 Ibs I "" `"""""""""" ^•`"' "'_ typically inches above F5= 0.0 Ibs @ 0 in(CM) F5= 0.0 Ibs Al � the top of shelf at each level. F5= 15.2 Ibs @ 66 in(CM) Fs= 16.4 Ibs @ 66in(CM) Fa= 12.1 Ibs @ 52.5 in(CM) F,= 0.0 Ibs FT= 9.0 Ibs @ 39 in(CM) F,,= 0.0 Ibs Fz= 5.9 Ibs @ 25.5 in(CM) F,= 0.0 Ibs F,= 2.8 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.4 Ibs @ 30 in(CM) F„= 2.5 Ibs @ 30in(CM) £f;= 69.3 Ibs(@ Factored Loads) £f;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=£f;h; Calculate Overturning Moment(Service),MOT=£f;h; Check Single Frame/Bay Overturning Stability: MOT= 2282 in-Ibs MOT= 1157 in-Ibs MOT(LC#1)= 2282 in-Ibs MIST(LC#1)= 16233 in-Ibs Calculate Resisting Moment(Service),MIST Calculate Resisting Moment(Service),MIST FOS=MIST/MOT= 7.991-1.5-No AB Reqd MIST= 18233 in-Ibs MIST= 6600 in-Ibs MOT(LC#2)= 1157 in-Ibs Factor of Safety Factor of Safety MIST(LC#2)= 6600 in-Ibs FOS=7.99 FOS=5.71 FOS=MIST/MOT= 5.707-1.5-No AB Reqd ->No Anchorage R -No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 _T R.= 24 Ibs 9 Ibs ,A"'E STEEL ANC44OR Ry= 0 Ibs No Uplift) 0Ibs No Uplift) k i PT�p �RA AN WI ( P ) ( P ) €[ Ikl - LACE i I*.. 2GA fi i AT Overturning FOS= 7.991-1.5 5.707-1.5 ) EA04 END FRAME AND Sliding Restraint force,RRST/FOS=114lbs/4.699-1.5 OK 46lbs/4.914-1.5 OK „ �szx)A3 INr�x7Ga FRA.f65, 7Y'l+'%.Na9. Reactions(Factored Loads): LC#1 LC#2 a Base Shear(Rj= 35 Ibs 13 lbs ° 1Z ANCHOR BOLTS PER • ... 5T12F.p A'!N'.EFi',04 FRtrAF6 Net Uplift(R,)= 0 Ibs 0 Ibs Overturning+Gravity(Pp)= 883 Ibs 272 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed Embedment= 2.125 in f',= 3500 psi T e„= 0 in<_-_Eccen.Of Anchor h,= 1.425 in 1.5(h,r)=2.25 in Conc.thickness,1= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowebles Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs<_ACI 318-08 Eq D-20 Steel Strength(0.75)�N„= 10043 Ibs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)OV„p= 1001 Ibs<__ACI 318-08 Eq D-22 Concrete Breakout(0.75)ON,= 1517 Ibs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)mV�,,,,= 703 Ibs<__ACI 318-08 Eq D-22 Pullout Strength(0.75)�Np,= 1252 Ibs<_ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�V,,g= 1597 Ibs<__ACt 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)OV,ry= 1634 Ibs<_-ACI 318-08 Eq D-31 Factored Tension Load(Nu)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vp)= 35 Ibs 13 Ibs MIN[cpNsa,,pNcbg,gNpnl/Nu= 99.99>2.5.OK-IBC I CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-1-C#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 48T 90"Tall"X"9 Level 1403002901 3z a 52 Northampton,MA-#2901 IBC 2009/ASCE 7-05 If 2008 RMI(ANSI/MH16.1-08) MAV 04/14115 L,H/2L. X—X H/2 Punching Shear Check: (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1205 Ibs Slab Concrete Vc= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. I ° I >- ( Rack Post Y-Y= 2 in. e I r bo= 24.00 in. j P= 1.00 ° CN V 22718 Ibs Eq.(22-10) = V°max= 15107 lbs Eq.(22-10) --------4'' +V,,= .133 ms (Pun)Ching L Perimeter) V,JOVn= 0.133<1.0 O.K. Slab tension based on Soil bearing area check: I ?0. HEAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psi NOTATE AT OTHER—UNIFORMLY DIStRIBUTED LOAD Max.Vertical Load(Service)(P)= 867 Ibs rnrd f.luly.umro.m Lead - s Area regd.for bearing(A.)= 0.58 Rz I^ n v a"r ,�v a u! "b"distance= 9.12 in v, Slab thickness(t)= 4.00 in S=(1")rzq'/6= 2.67 in3/in pM,„(tension allowable)=p(7.5)[(f')' ](S)= 710 in-lb/in Factored uniform bearing,w„=P„/A, = 14.49 lb/in/in �..-") M. - - 6 u•--s°•, M.=w„Lz/3=(w„)[(b-(2"))/2)z]/3= 6111 in-lb/in-DeFl.End M1=31 in-lb/in M.L!,.; ,.,,�_•._ ^+ �•*.d.nmed end) za¢1 M„/+Mnt= 0.086<1.0 O.K. ....>." m IMA _ Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in y Slab thickness(t)= 4.0 in S Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi (" q Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in'/ft :-Z Allowable Concrete Slab Bending Moment,M.=S't,= 1183.2 R'Ibs/R Effective Cantilever Span Length(L.)at M,= 6.9 R Total Length of Slab(4+Width of Single Rack)= 8.9 R i ) Trib.Width of Slab=Trib width of Rack= 4.0 R Weight of Concrete Slab at Rack(P_)= 1776 Ibs 0 Resisting Moment-Concrete Slab at Rack,M­(_)=P_ L l2= 94616 in'Ibs ' 1 Load Combination#1: - M o = 3767 in'Ibs M—(—)+ M.V(—)= 110288 in'Ibs Total Overtuming FOS= 29.275 OK Load Combination#2: Mor= 1267 in'Ibs .----------- M—(—)+M.T(—)= 98216 in'Ib5 .. ... �.... Total Overturning FOS= 77.530 OK 36X 90"Tail"X"9 Level 1403002901 31 a 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No me. MAV 04114/15 Total Load per shelf= 100 lbs<---assumes(2)shelves per level caw B, #of Levels= 9 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 16.67 psflshelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 R(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 18 in Total Shelf Load I Level/Frame hs= 10.5 in 200 lbs hs= 10.5 in 200 lbs hT= 10.5 in 200 lbs hs= 10.5 in 200 lbs hs= 10.5 in 200 lbs ---°^ h4= 10.5 in 200 lbs h3= 10.5 in 200 lbs j -I hz= 10.5 in 200 lbs h,= 6 in 200 lbs e Total Shelf Height,Hi= 90 in •--� -''�- Unit Height,H.= 90 in Unit Base Depth,D= 24 in - ...__ _...._._.._._......-_._ _...-... _._ _� Load Case 1•(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) I ------ `"'" Seismic(C,)(Ip)= 0.090 W, Seisrtvc(C,)(lo)= 0.090 W, Total Wt,W._(0.67)[0.67PL]+DL= 908.02 lbs Total Wt,W._(0.67)[(1)PL]+DL= 234 lbs ___,,,,_,._......._T;.:._._....m..A_. `. ._..._.. ,........ Base Shear,V=C,IpW,= 81.4 lbs Base Shear,V=Cj^= 21.0 lbs C Horizontal forces per level,F.=C,,,V(RMI seci 2.6.6) Horizontal forces per level,F.=C.V(RMI 26.6) j (Service Loads,E=0.7) FS= 70.5 lbs @ 96 in(CM) (Service Loads) FR= 11.9 lbs @ 96in(CM) Note. Fs= 9.4 lbs @ 85.5 in(CM) Fs= 0.0 lbs (CM)=Product Center of Mass F7= 8.2 Ibs @ 75 in(CM) Fr= 0.0 lbs y v typically 6 inches above Fs= 7.1 lbs @ 64.5 in(CM) Fs= 0.0 lbs the top of shelf at each level, Fs= 5.9 lbs @ 54 in(CM) Fs= 0.0 lbs F4= 4.8 Ibs Q 43.5 in(CM) F4= 0.0 lbs F3= 3.6 lbs @ 33 in(CM) F3= 0.0 lbs Fz= 2.5 lbs @ 22.5 in(CM) F2= 0.0 lbs F,= 1.3 lbs Q 12 in(CM) F,= 0.0 lbs F.= 3.7 Ibs @ 45 in(CM) F.= 2.8 lbs @ 45in(CM) if,= 81.4 lbs(@ Factored Loads) If;= 21.0 lbs(Q Factored loads) Calculate Overturning Moment(Service),MOT=Yfh; Calculate Overturning Moment(Service),MOT=Zf;h; Check Single Frame/Bay Overturning Stability: MOT= 3767 in-lbs MOT= 1267 in-lbs MOT(LC#1)= 3767 in-lbs MRST(LC#7)= 15672 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST 1 MOT= 4.160-1.5-No AB Reqd MRST= 15672 in-lbs MRST= 3600 in-lbs MOT(LC#2)= 1267 in-lbs Factor of Safety Factor of Safety MRST(LC#2)= 3600 in-lbs FOS=4.16 FOS=2.84 FOS=MRST/MOT= 2.842>=1.5-No AB Reqd -->No Anchorage Recid-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 28 lbs 7 lbs LIGT P{A.>�STEEL eA CHCA ) R„= 0 lbs(No Uplift) 0 lbs(No Uplift RACE STRARAi`BCYS� RSAT Overturning FOS= 4.160-1.5 2.842-1.5 - EACH END FRAME A7 n a c"r MAX)A N*.BRiOil FRAMES Sliding Restraint force,RRST/FOS=153lbs/5.364-1.5 OK 42lbs/5.784-1.5 OK „ - > r, toss,:;uo. fR t� Reactions(Factored Loads): LC#1 LC#2 - y , v Base Shear(Rj= 41 lbs 10 16s - <Zt ANCtaGA 32iTS PER a -.. 'STRAC AY,NF�R:p3i.=RAMES Net Uplift(R,.)= 0 Ibs 0 Ibs - Overturning+Gravity(P")= 1205 lbs 265lbs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor21/8"embed. Embedment= 2.125 in f'4= 3500 psi �......V - _.. C._. e,;= 0 in<--Eccen.Of Anchor ha= 1.425 in 1.5(h,r)=2.25 in Cone.thickness,t= 4 in #of Anchors,n= 2-anchors per connection %= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V,"= 3303 lbs c-ACI 318-08 Eq D-20 Steel Strength(0.75)�N,"= 10043 Ibs<-_ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�V,,= 1001 lbs c-ACI 318-08 Eq D-22 Concrete Breakout(0.75)fN.,= 1517 lbs-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V4SS= 703 lbs<_ACI 318-08 Eq D-22 Pullout Strength(0.75)0N,= 1252 lbs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)+V4,= 1597 lbs<_ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)¢V,,= 1634 Ibs<_ACI 318-08 Eq D-31 Factored Tension Load(N")= 0 lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V")= 41 lbs 10 Ibs MIN[gNsa,tpNcbg,VNpn]/Nu= 99.99>2.5-OK-IBC I CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36X PAW 78"Tall"V'5 Level 1403002901 30 52 Northampton,MA-#2901 .a.s' IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04114/15 L'H/2L. X—X H/2 tee, Punching Shear Check: (Design per section 22.5.4 ACI 318-08) �—.- --� Max.Factored Vertical Load(P„)= 993 Ibs 1e I \ Slab Concrete Vc= 3500 psi 1 I = Slab thickness(t)= 4 in Rack Post X-X= 2 in. 1 Rack Post Y-Y= 2 in. i a I r bo= 24.00 in I = 1.00 I N Vn= 22718 Ibs Eq.(22-10) 1 L ?__ 1 = ___ " __ !L Vn max= 15107 Ibs Eq.(22-10) mV,= 9064 Ibs �bo V,/+V„= 0.110<1.0 D.K. (Punching Perimeter) "r C. REAM FIXED AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based On Soil bearing area check: ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psi --- Total Vnironn . Max.Vertical Load(Service)(P)= 723 Ibs t4.14- Loaa� ��e e Area reqd.for bearing(A„,)= 0.48 ft' ["'°'-: r R v 3 j Kr "b"distance= 8.33 in Slab thickness(t)= 4.00 in S (1")(t)°/6= 2.67 in'fin --IM T-77 --n-x --�. �ar aan«.r awe} , OM,(tension allowable)=b�(7.5)[(f'�)'rz](S)= 710 in-lb/in ' r4 Factored uniform bearing,w„=P„/A„�- 14.37 lb/in/in , . . . . . . . . . .a Tt> s M„=w„Lr/3=(w„)[(1b-(2"))/2)21/3= 47,82 in-lb/in-Defl.End Mt=24 in-lb/in MAM„t= 0.067<1.0 O.K. a m.. a . . . . . . . . . -u;±zaet' Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in c Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi V 1 3 Concrete Slab Section Modulus,S=b(Q216= 32.0 ins/ft Allowable Concrete Slab Bending Moment,Mai=S'f,= 1183.2 ft'tbs/ft a....a Effective Cantilever Span Length(L.)at M.= 6.9 ft ! p€! # Total Length of Slab(4+Width of Single Rack)= 8.9 ft 1 Trib.Width of Slab=Tdb width of Rack= 4.0 ft I - .It Weight of Concrete Slab at Rack(P_,)= 1776 Ibs t( ) I t Resisting Moment-Concrete Slab at Rack,MRSTtmo>=Pte L./2= 94616 in'Ibs _ Load Combination#11: MOT= 2901 in'Ibs t J f _ •- MRST(—)+ MRSTlmo1= 107876 in'Ibs I LLI Total Overturning FOS= 37.181 OK ft Load Combination#2: MOT= 7472 in'Ibs -- MRST(i—)+ MRST(y )e 99416 in'Ibs Total Overturning FOS= 67.540 OK 36V PA�I� Io 78"Tall'V'5 Level 1403002901 zs a 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No MAV 04/14/15 Total Load per shelf= 150 lbs<-assumes(2)shelves per level #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 18 in Total Shelf Load/Level I Frame hs= 0 in hS= 0 in hT= 0 in he= 0 in hs= 18 in 300 Ibs h,= 18 in 300 Ibs h3= 18 in 300 Ibs h,= 18 in 300 Ibs 3 h,= 6 in 300 Ibs Total Shelf Height,H,= 78 in j Unit Height,H.= 78 in ;= Unit Base Depth,D= 24 in Load Case 1`(Load cases per RMI sea.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(lo)= 0.090 W, Seismic(Cs)(lo)= 0.090 W, { Total Wt,W,=(0.67)[0.67PLI+DL= 771351bs Total Wt,W,=(0.67)[(1)PL]+DL= 3011bs Base Shear,V=C,I^= 69.3 Ibs Base Shear,V=C:IoW:= 27.0 Ibs Horizontal forces per level,F,=C„V(RMI-ze6) Horizontal forces per level,F.=C„,V(RMI sea z s e) �^--- (Service Loads,E=0.7) Fs= 0.0 Ibs @ 0 in(CM) (Service Loads) F%= 0.0 Ibs Note: Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs -- (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) Fr= 0.0 Ibs °°'-'---'--- --.---- typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs `"5'""- the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) F,= 12.3 Ibs @ 66 in(CM) F,= 0.0 Ibs F,= 9.0 Ibs @ 48 in(CM) F,= 0.0 Ibs Fz= 5.6 Ibs @ 30 in(CM) Fi= 0.0 Ibs F,= 2.2 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.6 Ibs @ 39 in(CM) F,= 2.5 Ibs @ 39in(CM) if,= 69.3 Ibs(@ Factored Loads) if.= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yf;h, Calculate Overturning Moment(Service),MOT=Yf;h; Check Single Frame!Bay Overtuming Stability: Mor= 2901 in-Ibs Mor= 1472 in-Ibs MOT(LC#1)= 2901 in-Ibs MIST(LC#1)= 13260 in-Ibs Calculate Resisting Moment(Service),MIST Calculate Resisting Moment(Service),MIST FOS=MIST/MOT= 4.570-1.5-No AB Reqd MIST= 13260 in-Ibs MIST= 4800 in-Ibs MOT(LC#2)= 1472 in-Ibs Factor of Safety Factor of Safety MIST(LC#2)= 4800 in-Ibs FOS=4.57 FOS=3.26 FOS=MIST/MOT= 3.261>=1.5-No AB Reqd -a 'load cases are per ASCE 7-05 sect.15.5.3.2 No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 Reactions(Service Loads): LC#1 LC#2 - R,= 24 Ibs 9 Ibs " I IT. .,,A'GE ST.1 Aa.Ltr.:R ,. _ e'iA£ ..22GA hk, r SI R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) LA-E STRA,�A!4C�JORSAT Overturning FOS= 4.570>=1.5 3.281>=1.5 rACH END FRAME A140 h1Ax)AT IyTERIOR FRAMES Sliding Restraint force,RIST/FOS=127Ibs/5.232-1.5 OK 531bs 15.61-1.5 OK _ ____q------'F_ Trc;;; D Reactions(Factored Loads): LC#1 LC#2 t (z. Base Shear(Rj= 35 Ibs 13 Ibs -a :.. ST!tNc a�iwtER R FRAMES Net Uplift(Rr)= 0 Ibs 0 Ibs - r Overturning+Gravity(P„)= 993 Ibs 328 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 l/8"embed . - `- - -- Embedment= 2.125 in f'�= 3500 psi e,;= 0 in c-Eccen.Of Anchor hd= 1.425 in 1.5(h„)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection %= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)OV„= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75)�Nm= 10043 Ibs---ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)(V,,= 1001 Ibs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)+N,,= 1517 Ibs<-_ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V,bv= 703 Ibs c--ACI 318-08 Eq D-22 Pullout Strength(0.75)QNo„= 1252 Ibs c--ACI 318-08 Eq 0.14 Concrete breakout X dir.Both anchors(0.75)�V,,= 1597 Ibs<_ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)¢V,o,= 1634 Ibs< ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V„)= 35 Ibs 13 Ibs MIN[(pNsa,(pNcbg,(pNpni/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<12 OK-1_C#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36V 66"Tall"Ll"5 Level 1403002901 28 a 52 nom,cam. Northampton,MA-#2901 nh By IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 H/2 X—X H/2, tee, Punching Shear Check: ' � (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 957 Ibs Slab Concrete Vc= 3500 psi I = Slab thickness(t)= 4 in. - Rack Post X-X= 2 in. I I I Rack Post Y-Y= 2 in. bo= 24.00 in P= 1.00 N V.= 22718 Ibs Eq.(22-10) V.max= 15107 Ibs Eq.(22-10) ----� 0V„= 9064 Ibs V,/0V'= 0.106<1.00.K. (Punching Perimeter) 'r 4. HEAM FIXED AT ONE ENO,FREE TO DEFLECT VERTICALLY BUT NOT Slab tension based on Soil bearing area check: ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psi Max.Vertical Load(Service)(P)= 710 Ibs Area regd.for bearing(A,)= 0.47 f? t.}�-�—°��r I y 3 ss "b"distance= 8.26 in Slab thickness(t)= 4.00 in S=(1")(t)'/6= 2.67 ins/in �M,.(tension allowable)=Qr(T5)((f'�)1121(S)= 710 in-lb/in Factored uniform bearing,w„=P„/A„qd= 14.03 Ib(in(n F z `�- "I• - - - - s i=--s.r, /3= 45.79 in-lb/in-Defi.End M7=23 in-lb/in M„=wuL'13=(wu)[(D-(2"))/2)2] Mcmrnt Mnu. �. w;1•....yr• M„/�M„t= 0.064<1.0 O.K. \``�..: Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7 5'SURT(fc)= 443.7 psi X7 Concrete Slab Section Modulus,S=b(t)2/6= 32.0 ins/ft Allowable Concrete Slab Bending Moment,Myi=S'f,= 11812 ft'Ibs/ft Effective Cantilever Span Length(Lj at M,j= 6.9 ft I - Total Length of Slab(I,+Width of Single Rack)= 8.9 ft I [ 1 Trib.Width of Slab-Tnb width of Rack= 4.0 ft I IX Weight of Concrete Slab at Rack(P_)= 1776 Ibs f i t'. .. Resisting Moment-Concrete Slab at Rack,MasT(wb)=P—'L,,J2= 94616 in'Ibs Load Combination#1: MoT= 2488 in'Ibs _ ,.- MasT(a.a)`M—(—)= 107876 in'Ibs Total Overtuming FOS= 43.367 OK Load Combination fit: MOT - oT- 1262 in'Ibs -._ _ M—(—)+M—(-b)= 99416 in'Ibs ,..._.- -..... .. Total Overturning FOS= 78.796 OK 36U P� w 66"Tall"U"5 Level 1403002901 z7IX sz p�R.m. Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN) No e MAV 04/14115 Total Load per shelf= 150 Ibs<--assumes(2)shelves per level -B, , #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MM 6.1-08) Uniform Weight per level= 25.00 psi/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 18 in Total Shelf Load/Level/Frame hs= 0 in Its= 0 in hT= 0 i Its= 0 in hs= 15 in 300 Ibs h4= 15 in 300 Ibs hs= 15 in 300 Ibs i hz= 15 in 300 Ibs h,= 6 in 300 Ibs Total Shelf Height,H,= 66 in 9 Unit Height,Hu= 66 in 1 Unit Base Depth,D= 24 in i Load Case IT(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.6(2)) Seismic(C,)(Ip)= 0.090 W. Seismic(CJ(Ip)= 0.090 W, Total Wt,W,=(0.67)[0.67PLI+DL= 773.35 Ibs Total Wt,W,=(0.67)[(1)PLI+D1-= 301 Ibs i Base Shear,V=Cj^= 69.3 Ibs Base Shear,V=Cj^= 27.0 Ibs Horizontal forces per level,F.=C,.,V(RMI sea 2.6.6) Horizontal forces per level,F,=C„V(RMI sea 2.6.6) - ry (Service Loads,E=0.7) F.= 0.0 Ibs @ 0 in(CM) (Service Loads) FB= 0.0 Ibs Note: Fs= 0,0 Ibs @ 0 in(CM) F. 0.0 Ibs (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) Ft= 0.0 Ibs "" '"""' """""'°""'"" ••" "". typically 6 inches above Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs [ the top of shelf at each level. Fs= 15.4 Ibs @ 72 in(CM) FS= 16.4 Ibs @ 72in(CM) F.= 12.2 Ibs @ 57 in(CM) F,= 0.0 Ibs FB= 9.0 Ibs @ 42 in(CM) F,= 0.0 Ibs Fz= 5.8 Ibs @ 27 in(CM) Fz= 0.0 Ibs F,= 2.6 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.5 Ibs @ 33 in(CM) F.= 2.5 Ibs @ 33in(CM) Yf;= 693 Ibs(@ Factored Loads) Yf,= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yf;h, Calculate Overturning Moment(Service),MOT=Yf;h, Check Single Frame I Bay Overturning Stability: Mot= 2488 in-Ibs Mot= 1262 in-Ibs MOT(LM)= 2488 in-Ibs MRST(LC#1)= 13260 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST!MOT= 5.331-1.5-No AB Reqd MRST= 13260 in-Ibs MRST= 4800 in-Ibs MOT(LC#2)= 1262 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 4800 in-Ibs FOS=5.33 FOS=3.80 FOS=WIT!MOT= 3.804-1.5-No AB Reqd -->No Anchorage Recid-No Net Uplift at LC#1 and LC#2 'load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 ., t R,= 24 Ibs 9 Ibs t L1Gie'7 CA,0Ga STEEL A.-400 R,= 0 Ibs No Uplift) 0 Ibs No Uplift) 4 . STRAP S 2ANCHO ( P ) ( P ) .� r'.STRAfz2GAthkR AT Overturning FOS= 5.331>=1.5 3.804-1.5 r FA CHI€N FRAME AND 8•d'nc Sliding estraint force,R !FOS=123lbs!5.054-1.5 OK 51lbs!5.378>=1.5 OK } a1 )AT IN1'Estiga.FRAMES. 9 R4T Q 4A 2 A U Reactions(Factored Loads): LC#1 LC#2 r� Base Shear(Rj= 35 Ibs 13 Ibs - " - 12)ANCHOR V,01 TS:Est STRAP AT INTER Net Uplift(Rr)= 0 Ibs 0 Ibs jOR FRAMES i Overturning+Gravity(P.)= 957 Ibs 309lbs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 21/8"embed. - '- Embedment= 2.125 in ri V = 3500 psi e,;= 0 in-Eccen.Of Anchor hr= 1.425 in 1.5(h,I)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection S,= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V®= 3303 Ibs<--ACI 318-08 Eq D-20 Steel Strength(0.75)�N„= 10043 Ibs-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)4Vp,= 1001 Ibs-ACI 318-08 Eq D-22 Concrete Breakout(0.75)+Np,= 1517 Ibs<--ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)+Vp,= 703 Ibs-ACI 318-08 Eq D-22 Pullout Strength(0.75)pNp„= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)¢Vp,= 1597 Ibs-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)�V,pa= 1634 Ibs-ACI 318-08 Eq D-31 Factored Tension Load(Nu)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vp)= 35 Ibs 13 Ibis MIN[cpNsa,gNcbg,cpNpnl!Nu= 99.99>2.5-OK-IBC!CBC,sect 1908.1.9(Bridle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035 c 1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36U 60"Tall"T"5 Level 1403002901 2s a 52 Northampton,MA-#2901 .—s' IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 H/2 X—X H/2 L.Punching Shear Check: (Design per section 22.5.4 ACT 318-08) ____ — Max.Factored Vertical Load(P„)= 938 Ibs r'' Slab Concrete Vc= 3500 psi I Slab thickness(t)= 4 in. Rack Post X-X= 2 is Rack Post Y-Y= 2 in. b°= 24.00 in. 0= 1.00 N Vn= 22718 Ibs Eq.(22-10) V•max= 15107 lbs Eq.(22-10) --- 4V,= 9064lbs N::bc ° VAVn= 0.104<10O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I A. BEAM FIXED AT ONE ENO,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing 1500 psf ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD = Max.Vertical Load(Service)(P)= 704 Ibs Area regd.for bearing(A„,d)= 0.47 fe r Tolai Equlr u.ao.,o Low a=; "b"distance= 8.22 in a v. _ Slab thickness(t)- 4.00 in S-(1")(Q?/6= 2.67 in3ln s- pMm(tension allowable)=0,(7.5)[(f'�)'rzJ(S)= 710 in-IWin - `s-- I Factored uniform bearing,wu=P./Nd= 13.89 lb/in/in re> - n-s.•. M.=w„Lz/3=(w•)[(b-(2"))/2)2I/3= 44.78 in-lb/in-Derr End Ml=23 in-lb/in M m+•• �.c e.eme.e°ae� "_. 7 ?EI MJ+Mn,= 0.063<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 24 in i 1} Slab thickness(t)= 4.0 in (1 il Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi }. _ Concrete Slab Section Modulus S=b(t)2/6= 32.0 in3/ft Allowable Concrete Slab Bending Moment,M,,=S'f,= 11832 ft'Ibs/ft 1 _.. ""-- Effective Cantilever Span Length(Lj at Me,= 6.9 ft £y Total Length of Slab - I f �.-. 1 r g (4'Width of Single Rack)- 8.9 ft I Trib.Width of Slab=Trib width of Rack= 4.0 ft Weight of Concrete Slab at Rack(P )= 1776 Ibs 777 Resisting Moment-Concrete Slab at Rack,MesT(wn)=P. L•/2= 94616 in'Ibs 1 A, Load Combination#1: MOT= 2282 in'Ibs �' •- ,- Mas M - 107876 in'Ib5 Total Overturning FOS FOS= 47.278 OK t I ' Load Combination#2: MOT- 1157 m'Ibs Masrlrm.al*Masr(mo)= 99416 in'Ibs Total Overturning FOS= 85.958 OK 36T ­ry s,-w 60"Tall"T"5 Level 1403002901 2s a 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No MAV 04114115 Total Load per shelf= 150 Ibs-assumes(2)shelves per level #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 ft(Frames are assumed to be 4'-0"oc) Shelf depth(ea.side)= 18 in Total Shelf Load!Level/Frame hs= 0 in he= 0 in hT= 0 in h,= 0 in h,= 13.5 in 300 Ibs h.= 13.5 in 300 Ibs ...,,... -.,.....__.... .. .. -'rya-....3_... ....___:- hs= 13.5 in 300 Ibs h,= 13.5 in 300 Ibs I h,- 6 in 300 Ibs Total Shelf Height,H,= 60 in Unit Height,Hu= 60 in j Unit Base Depth,D= 24 in i Load Case 1•(Load cases per RMI sect.2.6.8(1)) Load Case 2•(Load cases per RMI sect.2.6.8(2)) Seismic(C,)(Ip)= 0.090 W, Seismic(Cj(Ip)= 0.090 W, Total Wt,W,=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W,=(0.67)[(1)PLI+DL= 301 Ibs Base Shear,V=C,I^= 693 Ibs Base Shear,V=C j^= 27.0 Ibs Horizontal forces per level,F.=C„V(R M1 sect 16.6) Horizontal forces per level,F.=C„V(RMI sac12 6) [^n (Service Loads,E=0.7) Fe= 0.0 Ibs @ 0 in(CM) (Service Loads) Fe= 0.0 Ibs Note. Fe= 0.0 Ibs @ 0 in(CM) FS= 0.0 Ibs r (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) F7= 0.0 Ibs typically inches above Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs the top of shelf at each level. Fs= 15.2 Ibs @ 66 in(CM) FS= 16.4 Ibs @ 66in(CM) mm - F4= 12.1 Ibs @ 52.5 in(CM) F.= 0.0 Ibs FS= 9.0 Ibs @ 39 in(CM) F,= 0.0 Ibs FZ= 5.9 Ibs @ 25.5 in(CM) F,= 0.0 Ibs F,= 2.8 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.4 Ibs @ 30 in(CM) F„= 2.5 Ibs @ 30in(CM) - If;= 69.3 Ibs(@ Factored Loads) If;= 27.0 Ibs(@ Factored Leads) Calculate Overturning Moment(Service),MOT=If;h, Calculate Overturning Moment(Service),MOT=Ifh; Check Single Frame/Bay Overturning Stability: MOT= 2282 in-Ibs MOT= 1157 in-Ibs MOT(LC#1)= 2282 in-Ibs MRST(LC#1)= 13260 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST FOS=MRST/MOT= 5.811-1.5-No AB Reqd MRST= 13260 in-Ibs MRST= 4800 in-Ibs MOT(LC#2)= 1157 in-Ibs Factor of Safety Factor of Safety MRST(LC#2)= 4800 in-Ibs FOS=5.81 FOS=4.15 FOS=MRST!MOT= 4.150>=1.5-No AB Regd ->No Anchorage Recid-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 "> R.= 24 Ibs 9 Ibs LIUHT±Ac7C+E 5?E6l A`:4WL'R R,= 0 lbs No Uplift) 0 lbs No Uplift) y„� STRAP STRAP ANCHORS( P ) ( P ) i EACH FN'N')FR ME AN' AT Overturning FOS= 5.811>=1.5 4.150>=1.5 - - e.ACi+z=rv;s FRAME.A41'19-A"« (MAX)A4 INTERIOR FRAMES. Sliding Restraint force,RRST I FOS=120lbs f 4.966-1.5 OK 50lbs/5.262>=1.5 OK Tri+r umo Reactions(Factored Loads): LC#1 LC#2 Base Shear(R,J= 351bs 131bs - -a2?ANCHOR BOLTS PER Net Uplift(Ry)= 0 Ibs 0 Ibs - " STRAR A-sR?ERIC3R F:Z}.4aes Overturning+Gravity(Pu)= 938 Ibs 300 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in i f'p= 3500 psi _..._ ... / L... e.,= 0 in c-Emen.Of Anchor ha= 1.425 in 1.5(h„)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)r V„= 3303 Ibs< ACI 318-08 Eq D-20 Steel Strength(0.75)�N®= 10043 Ibs<-ACt 318-08 Eq D-3 Concrete breakout Y dir.(0.75)+Vp,= 1001 Ibs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)�N,= 1517 Ibs< ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)OVp,= 703 Ibs< ACI 318-08 Eq D-22 Pullout Strength(0.75)�Npp= 1252 Ibs---ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vp,v= 1597 Ibs--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)�V_= 1634 Ibs c--ACI 318-08 Eq D-31 Factored Tension Load(N,)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(Vu)= 35 Ibs 13 Ibs MIN[WNsa,gNcbg,gNpnl!Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 36T 78"Tall' '5 Level 1403002901 24 a 52 Pte«... Northampton,MA-#2901 w.er IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 H/2 X—X H/2 W.er L.Punching Shear Check: (Design per section 22.5.4 ACI 318-08) v Max.Factored Vertical Load(P„)= 1079 lbs Slab Concrete f'c= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. I I r b.= 24.00 in P= 1.00 V.= 22718 lbs Eq.(22-10) i= V.max= 15107 lbs Eq.(22-10) L ° --- 4.) ov„= 9064 lbs �b0 --- c. V,/oy.= 0.119<1.0 O.K. (Punching Perimeter) ?f.. REAM FIXED AT ONE END,F U FREE TO DEFLECT VERTICALLY BT NOT Slab tension based On$O11 beating area Check: ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 pst Max.Vertical Load(Service)(P)- 754 lbs >• �-f e Area reqd.for bearing(A„0)= 0.50 ft' I---7 T. r "U'distance= 8.51 in Slab thickness(t)= 4.00 in - S=(1")(t)'/6= 2.67 in'/in I OM,(tension allowable)_�,(7.5)[(f.)"](S)- 710 in-lb/in Factored uniform bearing,w,=P„/A_,= 14.92 lb/in/in M„=w„L'/3=(w„)[(1b-(2"))12)']13= 52.62 in-IWin-Def1.End Mt=27 in-Ibrn MAMm= 0.074<1.0 O.K- .M w a �...i Y3E1y•.. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 18 in Slab thickness(t)= 4.0 in ' ; I_ Modulus of Rupture,f,=7.5`SQRT(fc)= 443.7 psi Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in'/ft r Allowable Concrete Slab Bending Moment Mwi=S`f,= 1183.2 ft`lbs/ft Effective Cantilever Span Length(L,)at My,= 6.9 R I f Total Length of Slab(h+Width of Single Rack)= 8.4 ft l [ i Trib.Width of Slab=Trib width of Rack= 4.0 ft ,[ I Weight of Concrete Slab at Rack(P.)= 1676 lbs / £ K` ., Resisting Moment-Concrete Slab at Rack,MesTl.re)=P_`L.12= 84261 in`Ibs j -1 Load Combination#1: M f oT= 2901 in'Ibs MRST(I—k)+ MRST(wn)= 94206 in`lbs t i. Total Overturning FOS= 32.469 OK Load Combination#2: MOT= 1472 in`Ibs MRS(F-Ju+ MRST—)° 87861 in`lbs .._ .. �_.. Total Overturning FOS= 59.690 OK 30V 78"Tall V'5 Level 1403002901 23« 52 P_- Northampton,MA-#2901 Seismic tmportance Factor= 1.5 Supported on Elevated Floor(Y/N): No MAV 04/14!15 Total Load per shelf= 150 Ibs<---assumes(2)shelves per level . By #of Levels= 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 30.00 psf/shelf Weight of Unit= 100# Upright Frame anchorage spacing(Trib width)= 4 R(Frames a-e assumed to be 4'-W oC) Shelf depth(ea.side)= 15 in Total Shelf Load/Level!Frame hg= Din hs= 0 i h,= 0 in hs= 0 i hs= 18 in 300 Ibs h,= 18 in 300 Ibs ,. .. _.. ... ........ dr. ,.pa.._ .... ....�..,. .. hs= 18 in 3001bs € h,= 18 in 300 Ibs 1 h,= 6 in 300 Ibs - Total Shelf Height,Hr= 78 in Unit Height,H„= 78 in .= Unit Base Depth,D= 18 in s Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect.2.6.8(2)) Seismic(CJ(IP)= 0.090 W, Seismic(Cj(IP)= 0.090 W, Total Wt,W,=(0.67)[0.67PL]+DL= 773.35 Ibs Total Wt,W,=(0.67)[(1)PL]+DL= 301 Ibsj Base Shear,V=Cj^= 69.3 Ibs Base Shear,V=Cj^= 27.0 Ibs 1 Horizontal forces per level,F.=C,,,V(RMI sect 26.6) Horizontal forces per level,F.=C„V(RMI sect 2e6) (Service Loads,E=0.7) Fy= 0.0 Ibs @ 0 in(CM) (Service Loads) F,,= 0.0 Ibs - Note: Fs= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs ..... "°°" -• ' ' typically 6 inches above Fg= 0.0 Ibs @ 0 in(CM) Fs= 0.0 Ibs the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 163 Ibs @ 84in(CM) "• """"" �" F,= 12.3 Ibs @ 66 in(CM) F4= 0.0 Ibs F,= 9.0 Ibs @ 48 in(CM) F�= 0.0 Ibs Fz= 5.6 Ibs @ 30 in(CM) Fz= 0.0 Ibs Fr= 2.2 Ibs @ 12 in(CM) F,= 0.0 Ibs F.= 3.6 Ibs @ 39 in(CM) F.= 2.5 Ibs @ 39in(CM) Yf;= 69.3 Ibs(@ Factored Loads) if,= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yf;h; Calculate Overturning Moment(Service),MOT=%f;h; Check Single Frame/Bay Overturning Stability: MOT= 2901 in-Ibs Mor= 1472 in-Ibs MOT(LC#1)= 2901 in-Ibs MIT(1-C#1)= 9945 in-Ibs Calculate Resisting Moment(Service),MIT Calculate Resisting Moment(Service),MRS, FOS=MRSr/Mor= 3.428>=1.5-No AB Reqd MIT= 9945 in-Ibs MRS,= 3600 in-Ibs MOT(LC#2)= 1472 in-Ibs Factor of Safety Factor of Safety MIT(LC#2)= 3600 in-Ibs FOS=3.43 FOS=2.45 FOS=MIT/MOT= 2.446>=1.5-No AB Reqd -->No Anchorage Reqd-No Net Uplift at LC#1 and LC#2 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 - R,= 24 Ibs 9lbs --'iG!t7,oz.,3C.E S7EEL a.:LHC•R TRAPE Ry= 0 Ibs(No Uplift) 0 Ibs(No Uplift) ex fl) y� PLACE�rapg A ycttda A, Overturning FOS= 3.428>=1.5 2.446>=1.5 EACH END FRAVE A7O3 4 ec } Sliding Restraint force,RRST I FOS=1371bs/5.648>=1.5 OK 581bs 16.152>=1.5 OK MAX)AT 14TEWOR FRAMES.yam,_..: ryp-No_ Reactions(Factored Loads): LC#1 LC#2 y `- y .. Base Shear(R,J= 35 Ibs 13 Ibs v i - -- (2)ANCHOR BOLTS�PER Net Uplift(R„)= 0 Ibs 0 Ibs Overturning+Gravity(P„)= 1079 Ibs 371 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in t " f',= 3500 psi . e,;= 0 in<---Eccen.Of Anchor h,= 1.425 in 1.5(h,r)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection Sx= 3.5 in Ase= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)$V®= 3303 Ibs<_ACI 318-08 Eq D-20 Steel Strength(0.75)�N„= 10043 Ibs<_-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�V�,= 1001 Ibs<_ACI 318-08 Eq D-22 Concrete Breakout(0.75)+Nc,,= 1517 Ibs< ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�Vc,= 703 Ibs< ACI 318-08 Eq D-22 Pullout Strength(0.75)0 N,,,= 1252 Ibs---ACI 318-08 Eq D-14 Concrete breakout dir.Both anchors(0.75)�VP,,= 1597 lbs< AC131&08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75),liV,rv= 1634 Ibs c_ACI 318-08 Eq D-31 Factored Tension Load(N,)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK 0.000 OK Factored Shear Load(V„)= 35 Ibs 13 Ibs MIN[(pNsa,gNcbg,cpNpn]/Nu= 99.99>2.5-OK-IBC I CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-NO ANCHORS REQUIRED 30V Wall Shelving/Single Sided Rr4aNn SRa 120"Tall"YZ"9 Level 1403002901 22« 52 Northampton,MA-#2901 wa.Rr onE IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 1, X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1367 Ibs r" - --a-- --_ N Slab Concrete V,= 3500 psi Slab thickness(t)= 4 in. = Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. I b.= 24.00 in. ° >- p= 1.00 Vn= 22718 Ibs Eq.(22-10) - N V„max= 15107 Ibs Eq.(22-10) a = pV„= 9064.381bs ° VJWn= 0.151 <1.0O.K. (Punching Perimeter) REAM riXED AT ONE END, FREE 10 DEFLECT VERTICALLY BUT NOT Slab tension based on Soil bearing area check: Allowable soil bearing 1500 psf ROTATE AT OTHER--UNIFORMLY D15t RIBL1TED LOAU = Max.Vertical Load(Service)(P)= 924 Ibs Area regd for bearing(A.)= 0.62 ft2 � - r Totn1 Ea�w.undor,n feed -s "b"distance= 9.42 in Slab thickness(t)= 4.00 in S=(1")(t)2/6= 2.67 ins/in r =e=.(ex n..e #MM(tension allowable)=p(7.5)[(f�)`](S)= 710 in-lb/in Factored uniform bearing,w„=P„/A„d= 15 lb/in/in s s M.=-.1-2/3=(w„)[(b-(2")/2)2]/3= 70.66 in-lb/in-Defl.End M1=36 in-lb/in I<•<-°�.a- Te a ,, M„/�MM= 0.100<1.0 O.K. v w 2<El;f Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 21 in Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SQRT(fc)= 4433 psi Concrete Slab Section Modulus,S=b(t)2 16= 32.0 ins/ft ! 1 Allowable Concrete Slab Bending Moment,M,WFS=S'fW1.5= 1183.2 ft'Ibs/fl Effective Cantilever Span Length(Lj at M,li= 6.9 it I Total Length of Slab(1,+Width of Single Rack)= 8.6 it -- i I Trib.Width of Slab=Trib width of Rack= 8.0 ft L�r 7" £"- # \yi ] - 3 Weight of Concrete Slab at Rack(P_)= 3452 Ibs F ' , "; A s Resisting Moment-Concrete Slab at Rack,M -P_'LJ2= 178727 in*lbs - r Load Combination#1: NIoT= 4890 in'Ibs ��,(,��}--• i „ ,r,"-._, � i r M +M - 192377 in'Ibs ) -� RST(R ) RST(—)- .......... Total Overtuming FOS= 39.342 OK i € i 1 Load Combination#2: McT= 1663 in•lbs MRST(—)*MRST(—)= 181677 In*lbS 4 `...""` •"".. Total Overturning FOS= 109.370 OK Wall-30YZ Wall Shelving/Single Sided Rye ap aao a 120"Tall"YZ"9 Level 1403002901 21 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No ".w By c.re MAV 04/14/15 Total Load per shelf= 100 Ibs ..e ay oam #of Levels= Wall 9 LEVEL IBC 2009/ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 10.00 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 It(Frames are assumed to be 4'-0"oc) Shelf depth= 30 in Total Shelf Load/Level h,,= 16 in 200 Ibs hs= 14 in 200 Ibs hi= 14 in 200 Ibs ha= 14 in 200 Ibs hs= 14 in 200 Ibs ha= 14 in 200 Ibs ; -- h,= 14 in 200 Ibs h2= 14 in 200 Ibs „ IT,= 6 in 200 Ibs f Total Shelf Height,Hr= 120 in Unit Height,H.= 120 in ' e: l Unit Base Depth,D= 21 in ? Load Case 1 (Load cases per RMI sect.2.6.8(1)) Load Case 2*(Load cases per RMI sect.2.6.8(2)) „ Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(Ip)= 0.090 W, I - Total Wt,W,=(0.67)[0.67PL)-DL= 908 Ibs Total Wt,W,=(0.67)[(1)PL]+DL= 234 Ibs Base Shear,V=C,I^= 81.4 Ibs Base Shear,V=Cj^= 21.0 Ibs _,.,„„_„„...,„................ `�.__.. ....-? Horizontal forces per level,F.=C„,V(RMI sect 2.6.6) Horizontal forces per level,F.=C„V(RMI sect 2.6.6) (Service Loads,E=0.7) F,,= 10.9 Ibs @ 126 in(CM) (Service Loads) Fa= 11.9 Ibs @ 126in(CM) Note: Fe= 9.5 Ibs @110 in(CM) Fa= 0.0 tbs (CM)=Product Center of Mass Fr= 8.3 Ibs @ 96 in(CM) Fr= 0.0 Ibs _ 3' typically 6 inches above Fe= 7.1 Ibs @ 82 in(CM) F,,= 0.0 Ibs I" the top of shelf at each level. Fs= 5.9 Ibis @ 68 in(CM) Fs= 0.0 Ibs ' 1 Fa= 4.7 Ibs @ 54 in(CM) Fa= 0.0 Ibs _ Fs= 3.5 Ibs @ 40 in(CM) F,= 0.0 Ibs F2= 2.2 Ibs @ 26 in(CM) F2= 0.0 Ibs Ft= 1.0 Ibs @ 12 in(CM) F,= 0.0 Ibs F„= 3.9 Ibs @ 60 in(CM) F„= 2.8 Ibs @ 60in(Chi) Yf;= 81.4 Ibs(@ Factored Loads) If;= 21.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef;h; Calculate Overturning Moment(Service),MOT=Ff;hl MOT= 4890 in-Ibs MOT= 1663 in-Ibs Calculate Resisting Moment(Service),MW Calculate Resisting Moment(Service),MRST MRST= 13650 in-Ibs MRST= 3150 in-Ibs Factor of Safety Factor of Safety FOS=2.79 FOS=1.89 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R.= 28 Ibs 7 Ibs - f R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) z.1cHT Oa`aE STEE:.Arnaeoaz ..'. STitAR f1 wr 2211A Yk) Overturning FOS= 2.792>=1.5 1.894>=1.5 PLACE STRAP AN, ND RS AT Sliding Restraint force,RRST/FOS=172lbs 16.03>=1-5 OK 491bs/6.684>=1.5 OK - i EACH END FRAME AND s-a oc k ( �IAAXJ AT INT ERIOR FRAMES, Reactions(Factored Loads): LC#1 LC#2 Base Shear(RJ= 41 Ibs 10 Ibs Net Uplift(Rr)= 0 Ibs 0 Ibs 5=qnv A;n ERIOR FRAMES Overturning+Gravity(Pp)= 1367 Ibs 321 Ibs Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 1/8"embed. Embedment= 2.125 in V = 3500 psi a., 0 in<-_Eccen.Of Anchor h„= 1.425 in 1.5(h,r)=2.25 in Conic.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs<--ACI 318-08 Eq D-20 Steel Strength(0.75)4N„= 10043 Ibs<_ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)+V�,= 1001 Ibs c-ACI 318-08 Eq D-22 Concrete Breakout(0.75)�Ncbp= 1517 Ibs< ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�Vpyo= 703 Ibs< ACI 318-08 Eq D-22 Pullout Strength(0.75)pNR,= 1252 Ibs c--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vpb,= 1597 Ibs< ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)¢Vppp= 1634 Ibs<--ACI 318-08 Eq D-31 Factored Tension Load(Np)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 41 Ibs 10 Ibs MIN[IpNsa,lpNcbg,(pNpn]I Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041 <1.2 OK-LC#1(controls) USE: (2)3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed.ICC REPORT#ESR-2526 Wall-30YZ Wall Shelving/Single Sided «"a —N. a 84"Tall"W"5 Level 1403002901 20 52 Northam ton,MA-#2901 IBC 2009/ASCE 7-0512008 RMI(ANSI/MH16.1-08) MAV 04114115 Punching Shear Check: H/2 X—X H/2 L, C Kd BY (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(Pj= -- --a-- ---� Slab Concrete f',= 3500 psi Slab thickness(q= 4 in Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. I - b°= 1 a` 24.00 in. I r (i= 1.00 I V.= 22718 Ibs Eq.(22-10) V„max= 15107 Ibs Eq.(22-10) L_ __?_ ov„= 9064.38 Ibs �bC • e. vow"= 0.130<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: BEAM FIXED AT ONE END, FREE TO DEFLECT 'VERT)CALLY BUT NOT Allowable soil bearing= 1500 psf HOT-ATE AT OTHER--UNIFORMLY DISTRIBUTED LOAD Max.Vertical Load(Service)(P)= 788 Ibs .._ t Eq Area regd,for bearing(A„w)= 0.53� Tutat�L r uw unrfo,r"Lund 3' "b"distance= 8.70 in . Slab thickness(t)= 4.00 in S=(1")(t)z/6- 2.67 in°!in µ n.,.:.:.(•o n..d a"d� ° `y°. 0MM(tension allowable)=I(T5)[(f'j1a](S)= 710 in-lb/in Factored uniform bearing,w„=P„/A„,= 16 lb/in/in s` M„=w„L/3=(w„)[(b-(2"))12)]13= 58.14 in-lb/in-Dell.End Mt=30 in-lb/in M fz-^._ �z+t • L.�_"_• �<o.� �at aenace.e a"d) '. ga€i M„/OM"t= 0.082<1.0 O.K. •°m..< T(i� 'm.., " NEI Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 15 in Slab thickness(t)= 4.0 in 1 I F,r Modulus of Rupture,f,=7.5•SClRT(Pc)= 443.7 psi �( Concrete Slab Section Modulus,S=bit)z/6= 32.0 in'/ft ' I T _ Allowable Concrete Slab Bending Moment,M,dFS=S'f,/1 5= 1163.2 fl•Ibs/fl Effective Cantilever Span Length(Lj at M,r= 6.9 ft Total Length of Slab(1,+Width of Single Rack)= 8.1 ft (_ Trib.Width of Slab=Trib width of Rack= 8.0 fl L � Jgy t Weight of Concrete Slab at Rack(P—)= 3252 Ibs € Resisting Moment-Concrete Slab at Rack,MRST1y,br°P�•L�12= 158616 in'Ibs ... ..\ i Load Combination#1: NIcT= 3103 in'Ibs - ,- i .-. ._ - .... M-T(—)+ MRST(—)= 166866 in'Ibs ...-. t .� Total Overturning FOS= 53.783 OK i 213 1 Load Combination#2: MoT= 1577 in+lbs MRST(I—)+ MRSr(d.nl° 161616 in'Ibs Total Overturning FOS= 102.477 OK Wall-24W Wall Shelving/Single Sided P"4 s ", a 84"Tall"W"5 Level 1403002901 19 52 P,"_R4 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(VIN): No race By w MAV 04114/15 Total Load per shelf= 150 lbs By om #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 18.75 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 fl(Frames are assumed to be 4'-0"oc) Shelf depth= 24 in Total Shelf Load/Level hs= 0 in hs= 0 in ITT= 0 in hs= 0 in hs= 20 in 300 lbs h4= 19 in 300 lbs hS= 20 in 300 lbs hz= 19 in 300 lbs h,= 6 in 300 lbs Total Shelf Height,H,= 84 in Unit Height,H.= 84 in Unit Base Depth,D= 15 in S Load Case 1'(Load cases per RMI sect 268(l)) Load Case 2' (Load cases per RMI sect 2 6.8(2)) i3 Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(I,)= 0.090 W, ' t Total Wt,W,_(0.67)[0.67PLJ+DL= 773 lbs Total Wt,W,_(0.67)[(1)PL]+D1_= 301 IIns ""'"".."""""'""'""""""""""""""" Base Shear,V=C,IpW,= 69.3 lbs Base Shear,V=C,IpW,= 2Z0 lbs Horizontal forces per level,F.=C„V RMI sect 2.6.6 Horizontal forces per level,F._ i P ( ) P C„V(RMI sect 2.6.6) ..__ .-,T..... (Service Loads,E=0.7) Fe= 0.0 lbs @ 0 in(CM) (Service Loads) Fy= 0.0 lbs ' Note: Fs= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs ] (CM)=Product Center of Mass FT= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs j typically 6 inches above Fs= 0.0 lbs @ 0 in(CM) FS= 0.0 lbs the top of shelf at each level. Fs= 15.9 lbs @ 90 in(CM) F,= 16.3 lbs @ 90in(CM) F4= 12.4 lbs @ 70 in(CM) F4= 0.0 lbs Fs= 9.0 lbs @ 51 in(CM) F,= 0.0 lbs Fz= 5.5 lbs @ 31 in(CM) Fz= 0.0 lbs Ft= 2.1 lbs @ 12 in(CM) F,= 0.0 lbs F„= 3.7 lbs @ 42 in(CM) F„= 2.5 lbs @ 42in(Ck1) %f,= 69.3 lbs(@ Factored Loads) Ef,= 27.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef;h; Calculate Overturning Moment(Service),MOT=Lf;h; MOT= 3103 in-lbs MOT= 1577 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 8250 in-lbs MRST= 3000 in-lbs Factor of Safety Factor of Safety FOS=2.66 FOS=1.90 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC 92 R,= 24 lbs 9lbs R,,= 0 lbs(No Uplift) 0 lbs(No Uplift) OGHT GAiIE STECL V4CHOR STRAP 0".x 2263 ft\ Overturning FOS= 2.659>=1.5 1.902>=1.5 - i ➢ ,�' PLACE STRAP ANCHORS AT Sliding Restraint force,RRsT/FOS=148lbs/6.118>=1.5 OK 641bs/6.771>=1.5 OK EACH X)AT I FRAME ANN.s FS TyP;AT INTERIOR FRAa.+F.S. •, ;3., &� �'P�ONO. Reactions(Factored Loads): LC#1 LC#2 Base Shear(Rj= 35 lbs 13 lbs t i2t AN HOR BOLTS PGR Net Uplift(Ry)= 0 lbs 0 lbs - j $TRAP A?ANTERIOR pRA.MES Overturning+Gravity(P.)= 1177 lbs 421 lbs .. Anchor Design(using"Cracked Concrete"Properties) i Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. , Embedment= 2.125 in ----- -----. .a ....t ........- f'p= 3500 psi 1 G; e.�= 0 in<--Eccen.Of Anchor h,= 1.425 in 1.5(hN)=2.25 in " Cone.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity %= 3.5 in A.= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 lbs c--ACI 318-08 Eq D-20 Steel Strength(0.75)QN„= 10043 lbs< ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)�V,�= 1001 lbs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)oNpb,= 1517 Ibs c-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V,= 703 lbs< ACI 318-08 Eq D-22 Pullout Strength(0.75)QNp,= 1252 lbs c-AC1318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)OVm,= 1597 lbs<_ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)mV_= 1634 lbs< ACI 318-08 Eq D-31 Factored Tension Load IN.)= 0 lbs 0 Ibs LC#1 LC#2 max tension stress ratio(rSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 35 lbs 13 lbs MIN[(pNsa,tpNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-24W Wall Shelving/Single Sided a 78"Tall"V"5 Level 1403002901 18 52 Northampton,MA-#2901 Mane BY Dale IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 X—X H/2 By (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P.)= 1146 Ibs a 4 Slab Concrete f'e= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. 1 bo° 24.00 in. � ° I } P= 1.00 Vn= 22718 Ibs Eq.(22-10) I N V„max= 15107 Ibs Eq.(22-10) ®V„= 9064.38 Ibs �bC a. vjov� 0.127<1.00.K. (Punching Perimeter) Slab tension based on Soil bearing area check: REAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf ROTATE AT OTHER-AINIFORMLY DISr RIESUTED LOAD Max.Vertical Load(Service)(P)= 778 Ibs _. t 7eFal Epu:v unform twe Area regd.for bearing(A„p)= 0.52 L z t - ' °8S`t "b”distance= 8.64 in 7 � ,'., *tr'% n_v Slab thickness(t)= 4.00 in S=(,)(t)2/6- 2.67 in3/in n.<n OM,(tension allowable)=Q7.5)[(f'.)"](S)= 710 in-lb/in Factored uniform bearing,wu=Pu 1A,_,= 15 lb/in/in M„=wu12/3=(w.%b-(2"))12)2]/3= 56.51 in-lb/in-Defl.End Mt=29 in-lb/in L._.,� i^�.a. (a:eenecsw erwa) crag M✓ KI= 0.080<1.0 O.K. 24El�a Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 15 in Stab thickness(t)- 4.0 in p,r Ir J �'7 Modulus of Rupture,f,=7.5•SQRT(Pc)= 443.7 psi - d,«:. Concrete Slab Section Modulus,S=b(t)216= 32.0 in3/ft I Allowable Concrete Slab Bending Moment,Ml/FS=S'flt 5= 1183.2 fl'Ibs/fl - Effective Cantilever Span Length(Lj at Mal,= 6.9 It Total Length of Slab(Ik+Width of Single Rack)= 8.1 ft it Tnb.Width of Slab=Trib width of Rack= 8.0 fl F - Weight of Concrete Slab at Rack(P..)= 3252 Ibs i ;! ,_.V Resisting Moment-Concrete Slab at Rack,MRST(—)=P_ L,12= 158616 in•Ibs - Load Combination#1: MOT= 2901 in•lbs - ? MRST(F-)+ MRST(we)= 166866 in'Ibs i Total Overturning FOS= 57.512 OK r Load Combination#2: MOT= 1472 in'Ibs ....;. + - 161616 in•Ibs Total Overturning FOS= 109.797 OK ` Wall-24V Wall Shelving/Single Sided P.)WN. 78"Tall,7/"5 Level 1403002901 ­ 17 rn 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No -.1 One MAV 04/14/15 Total Load per shelf= 150 Ibs cnKra er Dare #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 18.75 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 24 in Total Shelf Load/Level hi,,= 0 in h6= 0 in h,= 0 in hi,,= 0 in hs= 18 in 300 Ibs hz= 18 in 300 Ibs ..,..,..._. ..._...... .......:t'.. •. ",._. -.i_,-....by.. h3= 18 in 300 Ibs h,= 18 in 300 Ibs hf= 6 in 300 Ibs _ Total Shelf Height,Ht= 78 in Unit Height,H„= 78 in Unit Base Depth,D= 15 in 3 Load Case 1'(Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect 2.6.8(2)) =1 Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(1p) 0.090 W, Total Wt,W,_(0.67)[0.67PL]+DL- 773 Ibs Total Wt,W,_(0.67)[(1)PL]+DL= 301 Ibs '" """'""" """ A'.-- -- Base Shear,V=C,IpW,= 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs Horizontal forces per level,F.=CV(RMI sect 2.6.6) Horizontal forces per level,F.=C.V RMI sect 2.6.6) (Service Loads,E=0.7) Fs= 0.0 Ids @ 0 in(CM) (Service Loads) Fe= 0.0 Ibs NOW Fs= 0.0 Ibs @ 0 in(CM) Fa= 0.0 Ibs (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs f typically 6 inches above Fe= 0.0 Ibs @ 0 in(CM) F6= 0.0 Ibs ` the top of shelf at each level. F5= 15.7 Ibs @ 84 in(CM) F,= 16.3 Ibs @ 84in(CMl Fa= 12.3 Ibs @ 66 in(CM) Fa= 0.0 Ibs Fs= 9.0 Ibs @ 48 in(CM) F,= 0.0 Ibs F2= 5.6 Ibs @ 30 in(CM) Fz= 0.0 Ibs Ft= 2.2 Ibs @ 12 in(CM) F2= O.O Ibs Fp= 3.6 Ibs @ 39 in(CM) Fu= 2.5 Ibs @ 39in(CM) Yf,= 693 Ibs(@ Factored Loads) Yf,= 27.0 Ids(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Yfh, Calculate Overturning Moment(Service),MOT=Yfh, MOT= 2901 in-Ibs MOT= 1472 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 8250 in-Ibs MRST= 3000 in-Ibs Factor of Safety Factor of Safety FOS=2.84 FOS=2.04 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R.= 24 lbs 9lbs R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) t ( '0GHT GA,1GE STEEi a'ft HOR STRAF ft w r 22finA H:Aj Overturning FOS= 2.843>=1.5 2.038>=1,5 i PLACE STRAP Ab. HORS AT Sliding Restraint force,RRST/FOS=1451bs 15,98>=1.5 OK 62lbs 16.585>=1.5 OK EACH END FRAME AND 5 c'oc G :AAX2 AT INTER QR FRAKIE S, Fvc!ONO. Reactions(Factored Loads): LC#1 LC#2 3T`1 Base Shear(R,J= 35 Ibs 13 Ibs Net Uplift R - 0 Ibs 0 Ibs - -i2,ANC tlJR HA TS PER P ( v) L '- STRAF A'4MTEPI DR FRAMES Overturning+Gravity(P„)= 1148 Ibs 406 Ibs f { a.._...... Anchor Design(using"Cracked Concrete"Properties) i Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed Embedment= 2.125 in = 3500 psi I I I e,;= 0 in c--Eccen.Of Anchor � - h„= 1.425 in 1.5(h,f)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs< ACI 318-08 Eq 0-20 Steel Strength(0.75)ON„= 10043 Ibs--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)OV W= 1001 Ibs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)Kw= 1517 Ibs<--AC1318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�Vpag= 703 Ibs<_ACI 318-08 Eq D-22 Pullout Strength(0.75)QNm= 1252 Ibs<__ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75),tV.W= 1597 Ids-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75),tV,,= 1634 Ibs<_-ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(Vu)= 35 Ibs 13 Ibs MIN[q)Nsa,ryNcbg,,pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0,035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-24V Wall Shelving/Single Sided "e "" « 96"Tall"Y"9 Level 1403002901 1s 52 Northampton,MA-#2901 exev as IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1645lbs --1----- ---, Stab Concrete f•r= 3500 psi j,°. a a° �, \ Stab thickness(t)= 4 in. = Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. a4 ° b.= 24.00 in. ° } p= 1.00 V'= 22718 Ibs Eq.(22-10) V„max= 15107 Ibs Eq.(22-10) ov„= 9064.38 Ibs VAV"= 0.181 <1.00.K. �bo ------- (Punching Perimeter) Slab tension based on Soil bearing area check: - REAM rtkED AT GIVE END, FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psi ROTATE AT OTHER--UNIFORMLY DISTRIBUTED LOAD Max.Vertical Load(Service)(P) 1021 Ibs F t Area reqd.for bearing(A_)= 0.68 fl= a ( To*et Equrv.Uwrorm Load ••b"distance= 9.90 in Slab thickness(t)= 4.00 in S=(1')(q'/6= 2.67 ins/in ¢MM(tension allowable)=Q7.5)[(f•r)'�](S)= 710 in-lb/in ! .�. It Factored uniform bearing,w„=P„/A,.ya= 17 lb/in/in br M.=w„L'/3=(wu)[(b-(2"))/2)z]/3= 87.30 in-lb/in-Den.End Mt=44 in-lb/in �_ as �at sansasao antl) 2 EI M./OM"t= 0.123<1.0 O.K. ne(x� Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in ; Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SDRT(rc)= 443.7 psi Concrete Slab Section Modulus,S-b(t)2/6= 32.0 ins/fl Allowable Concrete Slab Bending Moment,MVFS=S'f,lt 5= 1183.2 fl'Ibs/ft i ( Effective Cantilever Span Length(Lr)at M,j= 6.9 ft Total Length of Slab(4+Width of Single Rack)= 7.8 ft Trib.Width of Slab=Trib width of Rack= 8.0 fl - Weight of Concrete Slab at Rack(P_)= 3118 Ibs Resisting Moment-Concrete Slab at Rack,M­(­))=P_•Lr12= 145876 in'Ibs . ., Load Combination#11: MOT= 3996 in'Ibs MRST(R.ck)+ MgsT(we)= 153026 in'Ib5 ; � ) n `- -,. ,::' Total Overturning FOS= 38.292 OK j Load Combination#2: MOT= 1346 in'Ibs _ ) I•`,' MRsT(—)'M—(—)= 147526 in'Ibs a _- I Total Overturning FOS= 109.599 OK -' Wall-18Y Wall Shelving/Single Sided =���� N. 96"Tall"Y"9 Level 1403002901 15 52 Prq i N, Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No -ey Oace MAV 04/14115 Total Load per shelf= 100 Ibs ev om. #of Levels= Wall 9 LEVEL IBC 2009/ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 16.67 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Tnb width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level hs= 11.5 in 200 Ibs h8= 11 in 200 lbs hr= 11.5 in 200 Ibs hs= 11 in 200 Ibs hs= 11.5 in 200 Ibs h,= 11 in 200 Ibs + h,= 11.5 in 200 Ibs hz= 11 in 200 Ibs ., h1= 6 in 200 Ibs Total Shelf Height,Hr= 96 in I Unit Height,H„= 96 in Unit Base Depth,D= 11 in Load Case 1`(Load cases per RMI sect.2 6.8(1)) Load Case 2'(Load cases per RMI sect.2,6 8(2)) i Seismic(C,)(Iv)= 0.090 W, Seismic(C,)(Iv)= 0.090 W. Total Wt,W,=(0.67)[0.67PL)+DL= 908 Ibs Total Wt,W,=(0.67)[(1)PLI+DL= 234 Ibs Base Shear,V=C,IvW,= 81.4 Ibs Base Shear,V=C,IvW,= 21.0 Ibs X,- F i F Horizontal forces per level,F„=CV(RMI sect 2.6.6) Horizontal forces per level,F.=C,,.V(RMI sect 2.6 6) j -N- (Service Loads,E=0.7) Fs= 10.6 Ibs @ 102 in(CM) (Service Loads) Fe= 11.9 Ibs @ 102in(CM) € ' Note: F,,= 9.4 Ibs @ 90.5 in(CM) Fe= 0.0 Ibs � °°�" -°•-� •• v?-^" - (CM)=Product Center of Mass FT= 8.3 Ibs @ 79.5 in(CM) FT= 0.0 Ibs typically 6 inches above F.= 7.1 Ibs @ 68 in(CM) Fa= 0.0 Ibs the top of shelf at each level. Fs= 5.9 Ibs @ 57 in(CM) Fs= 0.0 Ibs ,6 -----.--y- F,= 4.7 Ibs @ 45.5 in(CM) F4= 0.0 Ibs „ Fs= 3.6 Ibs @ 34.5 in(CM) F,= 0.0 Ibs F,= 2.4 Ibs @ 23 in(CM) F2= 0.0 Ibs F1= 1.2 Ibs @ 12 in(CM) F1= 0.0 Ibs F.= 3.7 Ibs @ 48 in(CM) F„= 2.8 Ibs @ 48in(Chi) If= 81.4 Ibs(@ Factored Loads) If= 21.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ff;h; Calculate Overturning Moment(Service),MOT=If;h; MOT= 3996 in-Ibs MOT= 1346 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MR.= 7150 in-Ibs MRsT= 1650 in-Ibs Factor of Safety Factor of Safety FOS=1.79 FOS=1.23 ii{%'t.t{...F.C`•.Cf:rya<,R2 Qil{W_D 'Load cases are per ASCE 7-05 sect.15.5.12 Reactions(Service Loads): LC#1 LC#2 R,= 28 Ibs 7 Ibs j fj.Ry= 0 Ibs(No Uplift) 0 Ibs(No Uplift) _«ICHT GA.xGE sTEE h>rc;l<oR , STRAP t 1'wr 22G b A) Overturning FOS= 1.789>=1.5 1.226-1.5 ABs Reqd PLACS STRAP A+,.t+;7RS at Sliding estraint force,R /FOS=204lbs/7.175>=1.5 OK 60lbs/8.155>=1.5 OK EAC'i EN FRAA"e A+1`D a-0'oc g RST - I £ IMAX}AT INTERIOR FRAMFES ^' TYP-UNO. Reactions(Factored Loads): LC#1 LC#2 u Base Shear(Rj= 41 Ibs 10 Ibs - i 4Z AN.^^"t1OR eMTS PER Net Uplift(Ry)= 0 Ibs 0 Ibs .q •: ? I 5TRAP AT INTERIOR FRAMES Overturning+Gravity(Pa)= 1645 Ibs 413 Ibs „{- Anchor Design(using"Cracked Concrete"Properties) fi Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. " I Embedment= 2.125 in ---- f'�= 3500 psi "I„ en'= O in< Eccen.Of Anchor h,= 1.425 in 1.5(h,r)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)iIV„= 3303 Ibs< ACI 318-08 Eq D-20 Steel Strength(0.75)�N„= 10043 Ibs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)il V"bg= 1001 Ibs<--ACI 318-08 Eq D-22 Concrete Breakout(0.75)ON�,= 1517 Ibs---ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V w= 703 Ibs---ACI 318-08 Eq D-22 Pullout Strength(0.75)4Nvr,= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vcb,,= 1597 Ibs c ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryoul(0.75)�Vcvv= 1634 Ibs<_ACI 318-08 Eq D-31 Factored Tension Load(Na)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 41 Ibs 10 Ibs MIN[yNsa,wNcbg,,pNpnl/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.041 OK 0.010 OK Combined shear and tension stress ratio(TSR+VSR)= 0.041<1.2 OK-1_C#1(controls) USE:(2)3/8"0 Powers Wedge-Bolt+Screw Anchor 21/8"embed.ICC REPORT#ESR-2526 Wall-1 8Y Wall Shelving/Single Sided 84"Tall"W"5 Level 1403002901 14 52 G,-Name Northam ton,MA-#2901 .x sr wrc IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: L'H/2L. X—X H/2 L. (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P.)= 13371bs --- --' Slab Concrete f',= 3500 psi �, 4 Slab thickness(t)= 4 in. Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. 1 c4 4 >- bo= ° I 24.00 in. 1 ..i r �= 1.00 I V 22718 lbs Eq.(22-10) 1 N V„max= 15107 Ibs Eq.(22-10) °a = il,V„= 9064.381bs � V./W = 0.148<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: REAM FIXED AT ONE END,FREE TO DEFIECT VERTICALLY 8111 NOT Allowable soil bearing= 1500 psf ROTATE AT OTiiiLR---LINIFORMLY Df&'t RIBUTED LOAD Max.Vertical Load(Service)(P)= 844 Ibs Unirorm Lwd - e Area regd.for bearing(A.)= 0.56 It' _ r g^'+ "b"distance= 9.00 in '"`a R"v - k+ Slab thickness(t)= 4.00 in v: - ... S=(1")(t)'16= 2.67 in"An . m.s..(AT n..n s ) OM„t(tension allowable)=4(7.5)[(f',)tn](S)= 710 in-lb/in Factored uniform bearing.w"=P„I - I' ` �� � _ M.=w.h/3=(w.)[(b-(2"))12)Z]/3= 67.42 in-lb/in-Defl.End M1=34 in-lb/in (as esn—e„a) 2 E1 M.]$Mnt= 0.095<1.0 O.K. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in I Slab thickness(t)= 4.0 in 1 Modulus of Rupture,f,=7.5'SQRT(rc)= 443.7 psi M ] 1 Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in'/ft Allowable Concrete Slab Bending Moment,M,ifFS=Sf,/1 5= 1183.2 ft'Ibs/ft t-7 - Effective Cantilever Span Length(Lj at M,r- 6.9 ft Total Length of Slab(4+Width of Single Rack)= 7.8 ft - Trib.Width of Slab=Trib width of Rack= 8.0 ft Weight of Concrete Slab at Rack(P_)= 3118 Ibs t - "" - t t; ;) ;. Resisting Moment-Concrete Slab at Rack,MR,(­)=P_ L.12= 145876 in•lbs - J V J r Load Combination#1: MOT= 3103 in'Ibs _ s MRSTIwoxl* MRSTIU.n>= 151926 in'Ibs .Overturning FOS= 48.968 OK 1 `t i Load Combination#2: MOT= 1577 in'Ibs MRSTCR,oq* MRSTist.bl= 148076 in'Ibs { •- ', ", -''-:-'• , v Total Overturning FOS= 93.891 OK - I Wall-18W Wall Shelving/Single Sided Pad N" s nN. 84"Tall"W"5 Level 1403002901 13 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No Ona MAV 04114115 Total Load per shelf= 150 lbs cne„rea By Dare #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 If(Frames are assumed to be 4'-O"oc) Shelf depth= 18 in Total Shelf Load/Level hs= 0 in h.= 0 in hr= 0 in hs= 0 in Its= 20 in 300 lbs ha= 19 in 300 lbs ., hs= 20 in 300 lbs hz= 19 in 300 lbs - h,= 6 in 300 lbs $ 'i Total Shelf Height,H,= 84 in 'I Unit Height,H.= 84 in Unit Base Depth,D= 11 in Load Case 1`tLoad cases per RMI sec[2.6.611)) load Case 2`(Load cases per RMI sect.2.6.6(2)) £ Seismic(C,)(1p)= 0.090 W, Seismic(C,)(Ip)= 0.090 W, r Total Wt,Ws=(0.67)[0.67PL]+DL= 773 lbs Total Wt,W,=(0.57)[(1)PL]+DL= 301 lbs °•°°°---°•°°°°••-••••°°°°°•-• ',;.--._ .._. Base Shear,V=C,IpW,= 69.3 IDs Base Shear,V=C,I^= 27.0 lbs Horizontal forces per level,F.=CvV(RMI sect 2.6 6) Horizontal forces per level,F.=C„,V(RMI sect 2.e-6) (Service Loads,E=0.7) Fs= 0.0 lbs @ 0 in(CM) (Service Loads) Fs= 0.0 lbs Note: Fs= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs (CM)=Product Center of Mass Fr= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs ; 1 typically 6 inches above Fs= 0.0 lbs @ 0 in(CM) Fe= 0.0 lbs the top of shelf at each level. Fs= 15.9 lbs @ 90 in(CM) Fs= 163 lbs @ 90in(CM) ..ak.. F,= 12.4 lbs @ 70 in(CM) Fa= O.O lbs Fs= 9.0 lbs @ 51 in(CM) Fs= 0.0 lbs F2= 5.5 lbs @ 31 in(CM) Fz= 0.0 lbs F,= 2.1 lbs @ 12 in(CM) F,= 0.0 lbs F.= 33 lbs @ 42 in(CM) F„= 2.5 lbs @ 42in(CM) Yf;= 69.3 lbs(@ Factored Loads) %f;= 27.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ifh; Calculate Overturning Moment(Service),MOT=Lf;h; MOT= 3103 in-lbs MOT= 1577 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-lbs MRST= 2200 in-lbs Factor of Safety Factor of Safety FOS=1.95 FOS=1.39 `Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 lbs 91bs i k Ry= O lbs(No Uplift) O lbs(No Uplift) i1Gr1r ?A; E sTEe;AUCtfoR STRAW,t'w r 22rsA xh4j Overturning FOS= 1.950>=1.5 1395<1.5 ABs Reqd PLACE STRAP AN, AT Sliding Restraint force,RRST/FOS=167lbs/6.893>=1.5 OK 73lbs/7.783-1.5 OK - - ( EACH END FRAME ANG 8.0-« 0.0,X1 AT INT_R,CR FRAMES, Reactions(Factored Loads): LC#1 LC#2 Base Shear(Ro= 35 Ibs 13 lbs its AN HDR BO+TH PEI Net Uplift(Ry)= 0 Ibs 0 lbs 1 ` ; Sigap A-r r-ERIOR FRAMES Overturning+Gravity(P„)= 1337 lbs 503 lbs I 1 Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. " s Embedment= 2.125 in P,= 3500 psi 1 r an'= 0 in<--Eccen.Of Anchor f -f •-- •-`- h,= 1.425 in 1.5(hN)=2.25 in Cone.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)AV„= 3303 lbs<--ACI 318-08 Eq D-20 Steel Strength(0.75)pN„= 10043 lbs<--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)#Vcb�= 1001 lbs<-_ACI 318-08 Eq D-22 Concrete Breakout(0.75)4Ncbg= 1517 lbs<-_ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)+Vcv= 703 lbs<--ACI 318-08 Eq D-22 Pullout Strength(0.75)ONpr,= 1252 lbs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)®Vcbg= 1597 lbs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)r V_= 1634 lbs<__ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs 0 lbs LC#1 LC#2 max tension stress rata(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 35 lbs 13 lbs MIN[WNsa,gNcbg,WNpn]I Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE:(2)3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed.ICC REPORT#ESR-2526 Wall-18W Wall Shelving/Single Sided Pte,— BMR RP a 78"Tall W"5 Level 1403002901 12 52 P, Ram. Northampton,MA-#2901 aoe By Dak IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 cnKiao By Punching Shear Check: H/2 L. X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1298 Ibs Slab Concrete f',= 3500 psi Slab thickness(t)= 4 in I. = Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. b°= 24.00 in. a r I p= 1.00 VD= 22718 Ibs Eq.(22-10) N 16 I \ V„Max= 15107 Ibs Eq.(22-10) S W°= 9064.381bs ° V„/OV"= 0.143<1.0O.K. �bO (Punching Perimeter) END, FREE TO DEFLECT VERTICALLY BUT NOAllowable w RLAM FIXED AT ONE. Slab tBOSIOn based On Soil bearing area check: RDTAI E AT OTHER--UNIFORMLY DISTRIBUTED LOAD Allowable soil bearing= 1500 psf Max.Vertical Load(Service)(P)= 830 Ibs l I. ._. t , Area reqd.forbearing(A_0= 0.55 s TQ*�Epn.r,U14—Loan R "b"distance= 8.93 in - •r R .v Va Slab thickness(t)= 4.00 in S=(1")(q2 16= 2.67 in'/in m,.eas.(It nsd and) . . +MM(tension allowable)=d„(7.5)[(f'j'o](S)= 710 in-lb/in o—ced e"n Factored uniform bearing,w„=P„/A,,qd= 16 Ib/intin M.=w„L2/3=(w„)[(b-(2"))12)']/3= 65.14 in-lb/in-Deft.End Mt=33 in-lb/in miom t= 0.092<1.0 O.K. ww 2 2°Er e Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in r Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7 5'SaRT(Pc)= 443.7 psi -- J i �I Concrete Slab Section Modulus,S=b(q'/6= 32.0 ins/fl - i Allowable Concrete Slab Bending Moment,Md/FS=S'f,/1.5= 1183.2 fl'Ibs/fl *-T._ Y -_"' j–'-• --- Effective Cantilever Span Length(L,)at M,ii= 6.9 ft Total Length of Slab(1,+Width of Single Rack)= 7.8 ft Trib.Width of Slab=Trib width of Rack= 8.0 fl Weight of Concrete Slab at Rack(P )= 3116 Ibs (;s f -°"---+- __ ,.. Resisting Moment-Concrete Slab at Rack,MRST(wq=P_ L,/2= 145876 in'Ibs - Load Combination#1: N1oT= 2901 in'Ibs <<]-. M RST(R )+M RTIN)— 151926 in'Ibs - ..._.... �:::_i Total Overturning FOS= 52.363 OK 1 Load Combination#2: McT= 1472 in'Ibs MRST(R )+ MST(—) 148076 in9bs 17 °` ){ .. ` £ Total Overturning FOS= 100.598 OK 3 Wall-18V Wall Shelving/Single Sided Ro SCR, 78"Tall W"5 Level 1403002901 111" 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No Om, MAV 04/14/15 Total Load per shelf= 150 Ibs By #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shelf Weight of Unit= 100# Rack anchorage spacing/Trib width= 8 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level hs= 0 in hB= 0 in hr= 0 in hB= Din h,= 18 in 300 Ibs - h4= 18 in 300 Ibs .__."....-. h,= 18 in 300 Ibs h,= 18 in 300 Ibs - h1= bin 3001bs -"y, >f^---" :-';.• + .._. �.. Total Shelf Height,Ht= 78 in Unit Height,Hp= 78 in lj 3 Unit Base Depth,D= 11 in Load Case 1 (Load cases per RMI sect 2.6.6(1)) Load Case 2•(Load cases per RMI sect 2 6.8(2)) 7I7 3 Seismic(Cj(Ip)= 0.090 W, Seismic(C,)(Ip)= 0.090 W, ]j Total WL W,_(0.67)[0.67PL]+DL= 773 Ibs Total Wt,W,=(0.67%1)PL]+DL= 301 Ibs °•-- Base Shear,V=C,IRW,= 69.3 Ibs Base Shear,V=C,IpW,= 27.0 Ibs 3 1 Horizontal forces per level,F.=C„V(RMI sect 2.6.6) Horizontal forces per level,F„=C„V(RMI sect 2g6) (Service Loads,E=0.7) Fs= 0.0 Ibs @ 0 in(CM) (Service Loads) FB= 0.0 Ras Note: FB= 0.0 Ibs @ 0 in(CM) FS= 0.0 Ibs (CM)=Product Center of Mass F7= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs _ typically 6 inches above FB= 0.0 Ibs @ 0 in(CM) FB= 0.0 Ibs the top of shelf at each level. Fs= 15.7 Ibs @ 84 in(CM) Fs= 16.3 Ibs @ 84in(CM) F4= 12.3 Ibs @ 66 in(CM) F4= 0.0 Ibs FB= 9.0 Ibs @ 48 in(CM) F,= 0.0 Ibs F2= 5.6 Ibs @ 30 in(CM) F2= 0.0 Ibs F,= 2.2 Ibs @ 12 in(CM) F1= 0.0 Ibs F„= 3.6 Ibs @ 39 in(CM) F„= 2.5 Ibs @ 39in(CM) Yf;= 69.3 Ibs(@ Factored Loads) if,= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ff;h; Calculate Overturning Moment(Service),MOT=Yf;h; MOT= 2901 in-Ibs MOT= 1472 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-Ibs MRST= 2200 in-Ibs Factor of Safety Factor of Safety FOS=2.09 FOS=1.49 11Pi_::-T iL�iCH:3:25 f?`::GvSF?(::Ii *Load cases are per ASCE 7-05 sect.15.5.12 Reactions(Service Leads): LC#1 LC#2 R.= 24 Ibs 9 Ibs R,= 0 Ibs(No Uplift) 0 Ibs(No Uplift) .3 .rcHT-+.E ST.'A.-HC R STRAP ft w y 22GA s A, Overturning FOS= 2.085>=1.5 1.495<1.5 ABs Reqd PLACEE STRAP ANCHORS AT Sliding Restraint force,RRST/FOS=1631bs/6.705>=1.5 OK 71lbs/7.53>=1.5 OK a � EACH FRAME( R FRAMES 9€ c _ y vP r uNO. Reactions(Factored Loads): LC#1 LC#2 Base Shear(Ro= 35 Ibs 13 Ibs P. Net Uplift(Ry)= 0 Ibs 0 Ibs k--- i2 STRAP rr .EpIORFRr3.aEs Overturning+Gravity(Pp)= 1298 Ibs 482 Ibs Anchor Design(using"Cracked Concrete"Properties) 3 Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in _.._- ..._ _..._�_. .. ..._. f',= 3500 psi �..�.... "" ... r.`..j/_. e,;= 0 in<__Eccen.Of Anchor li h,= 1.425 in 1.5(h,r)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in2 Shear Allowables Tension Allowables Steel Strength(0.75)+V„= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75)+N„= 10043 Ibs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)+V,bq= 1001 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)+Nppp= 1517 Ibs<_-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)+V,w= 703 Ibs<_ACI 318-08 Eq D-22 Pullout Strength(0.75)+Npp= 1252 Ibs<_ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)+V, = 1597 Ibs<_-ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)+V,pv= 1634 Ibs<_ACI 318-08 Eq D-31 Factored Tension Load(Nu)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(Vp)= 35 Ibs 13 Ibs MIN[;Nsa,(pNcbg,cpNpn]I Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE:(2)3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. ICC REPORT#ESR-2526 Wall-18V Wall Shelving/Single Sided 66"Tall"U „,"5 Level 1403002901 101- 52 Northampton,MA-#2901 —y IBC 2009/ASCE 7-05 12008 RMI(ANSI/MH16.1-08) MAV 04114/15 Punching Shear Check: H/2 X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P.)= 1218 Ibs Slab Concrete V,= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. - Rack Post Y-Y= 2 in. ba= 24.00 in. i ° I >- p= 1.00 I V"= 22718 Ibs Eq.(22-10) I N I d I \ V„max= 15107 Ibs Eq.(22-10) ovn= 9064.38 lbs bO ydoyn 0.134<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I REAM FIX€D AT ONE END,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psi R07ATE AT OTHER—d1NiFORMLY DISIRIBUTED LOAD Max.Vertical Load(Service)(P)= 802 Ibs ! ...... _- Area re d.for bearing(h.oa) 0.53 ]Y t Tar»ar V E a: um rm Loa c"b"distance= 8.78 in _ Slab thickness(t)= 4.00 in S=(1")(t)'/6= 2.67 in'/in n..a.na� ¢MM(tension allowable)=Q7.5)[(f'<)`](S)= 710 in-lb/in Factored uniform bearing,w„=P./A,. = 16 Ib/in/in rs, M.=w„L2/3=(w„)[(b-(2"))/2)Z]/3= 60.50 in-lb/in-Deft.End Mt=31 in-lb/in . . . . . Lam:—._ �� �at danavaw rod? �za�i MuWnt= 0.085<1.0 O.K. _. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in U Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5`SaRT(fc)= 443.7 psi } Concrete Slab Section Modulus,S=b(t)'/6= 32.0 ins /ft f t Allowable Concrete Slab Bending Moment,My/FS=S'f,/1 5= 1183.2 ft`lbs/ft f`-- Effective Cantilever Span Length(L<)at M.ii= 6.9 ft Total Length of Slab(l.+Width of Single Rack)= 7.8 ft Trib.Width of Slab=Trib width of Rack= 8.0 ft ! I t 1 Weight of Concrete Slab at Rack(P,_)= 3118 Ibs ,�I 1,Vi ) —� Resisting Moment-Concrete Slab at Rack,M =P_`Q2= 145876 in`lbs Load Combination#1: MoT= 2488 in`lbs ( l 151926 inIbs MRST(R )+ MRST( b) —._{ Total Overturning FOS= 61.075 OK �i Load Combination 92: MoT= 1262 in`lbs ; 1 MRST(R-)`MRST(mb)= 148076 in`lbs Total Overturning FOS= 117.363 OK - Wall-18U Wall Shelving/Single Sided Pie N. a 66"Tall"U"5 Level 1403002901 s 52 ec,Name Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No nl,ae av a., MAV 04114/15 Total Load per shelf= 150 Ibs r om #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shell Weight of Unit= 100# Rack anchorage spacing/Trip width= 8 ft(Frames are assumed to be 4=0"oc) Shelf depth= 18 in Total Shelf Load/Level hs= 0 in his= 0 in hT= 0 in hs= 0 in h5= 15 in 300 Ibs ha= 15 in 300 Ibs h3= 15 in 300 Ibs "1 hz= 15 in 300 Ibs h1= 6 in 300 tbs -, 4-7 Total Shelf Height,Hr= 66 in Unit Height,H„= 66 in Unit Base Depth,D= 11 in Load Case 1 (Load cases per RMI sect.2.6.8(1)) Load Case 2'(Load cases per RMI sect 2.6.8(2)) I Seismic(C,)(1,)= 0.090 W, Seismic(C,)(Ip)= 0.090 W, Total Wt,W,_(0.67)[0.67PL]+DL= 773 Ibs Total Wt,W,_(0.67)[(1)PL]+D1_= 301 Ibs l Base Shear,V=C,I,W,= 69.3 Ibs Base Shear,V=C,I,W,= 27.0 Ibs Horizontal forces per level,F.=C„,V(RMI sect 2.6.6) Horizontal forces per level,F.=CV(RMI sect 2.66) (Service Loads,E=07) Fa= 0.0 Ibs @ 0 in(CM) (Service Loads) Fa= 0.0 Ibs Note: Fe= 0.0 Ibs @ 0 in(CM) Fa= 0.0 Ibs (CM)=Product Center of Mass Fr= 0.0 Ibs @ 0 in(CM) F,= 0.0 Ibs i typically 6 inches above Fa= 0.0 Ibs @ 0 in(CM) Fa= 0.0 Ibs ( _ the top of shelf at each level. F5= 15.4 Ibs @ 72 in(CM) F,= 16.4 Ibs @ 72in(CM) J,. .....A F,= 122 Ibs @ 57 in(CM) F,= 0.0 Ibs F3= 9.0 Ibs @ 42 in(CM) F3= 0.0 Ibs F,= 5.8 Ibs @ 27 in(CM) Fz= 0.0 Ibs F1= 2.6 Ibs @ 12 in(CM) F1= 0.0 Ibs F.= 3.5 Ibs @ 33 in(CM) F„= 2.5 Ibs.@ 33in(CM) If;= 69.3 Ibs(@ Factored Loads) If;= 27.0 Ibs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),MOT=If;h; MOT= 2488 in-Ibs MOT= 1262 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-Ibs MRST= 2200 in-Ibs Factor of Safety Factor of Safety FOS=2.43 FOS=1.74 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 lbs 9lbs R,= 0 Ibs(No Uplift) 0 Ibs(NO Uplift) ->IGaT GA:iE 5'E E:ASiC HOR STRAP 0".r 22`.54*hk! Overturning FOS= 2.432>=1.5 1.744>=1.5 PLACE STRAP ANCHORS AT Sliding Restraint force,RRST/FOS=153lbs 16.317>=1.5 OK 661bs 17.024>=1.5 OK e k i EACH 4NT'�iNT1P:R OR FkA61ES r .tm TYC.ONO. Reactions(Factored Loads): LC#1 LC#2 1ti Base Shear(Rj= 35 Ibs 13 Ibs Net Uplift(Ry)= 0 Ibs 0 Ibs '-- I --^ e j STRAP�A�'.RN ER IOR FIW4125 ....... ... '._..... , Overturning+Gravity(P„)= 1218 Ibs 442 Ibs ( _ Anchor Design(using"Cracked Concrete"Properties) Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 l/8"embed. I Embedment= 2.125 in -"` f',= 3500 psi - a.. 0 in<--Eccen.Of Anchor h,= 1.425 in 1.5(h,r)=2.25 in Conc+thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs c-ACI 318-08 Eq D-20 Steel Strength(0.75)QN„= 10043 Ibs< ACI 318-08 Eq D-3 Concrete breakout dir.(0.75)ilV,e,= 1001 Ibs o-AC1 318-08 Eq D-22 Concrete Breakout(0.75)QN,w= 1517 Ibs< ACI 318-08 Eq 0-5 Concrete breakout X dir.Single(0.75),pV�.= 703 Ibs<--ACI 318-08 Eq 0-22 Pullout Strength(0.75)mN,,,= 1252 Ibs<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)QV„v= 1597 Ibs o--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75)�Vs„= 1634 Ibs c-ACI 31a-08 Eq D-31 Factored Tension Load(N.)= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(Vs)= 35 Ibs 13 Ibs MIN[1pNsa,TNcbg,(pNpn]I Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-18U Wall Shelving/Single Sided 60"Tall'T"5 Level 1403002901 6 52 Northampton,MA-#2901 —.1 — IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 Punching Shear Check: H/2 X—X H12 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1178 Ibs Slab Concrete f',= 3500 psi Slab thickness(t)= 4 in. Rack Post X-X= 2 in. Rack Post Y-Y= 2 in. b.= 24.00 in. I a r I i p= 1.00 Vn= 22718lbs Eq.(22-10) - N e a \ V„max= 15107 Ibs Eq.(22-10) I c I = #V„= 9064.381bs VAVn= 0.130<1.0 O.K. �bo (Punching Perimeter) Slab tension based on Soil bearing area check: REAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psi ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Max.Vertical Load(Service)(P)= 788 Ibs Area reqd.for bearing(A„O)= 0.53 f' I Torat Egui,,.UnUorm load a L -sri "b"distance- 8.70 In (pia r v . . . - . w! Slab thickness(t)- 4.00 in V, . S=(1')(t)'/6= 2.67 in'/in » a,maa.(aI rk°.d.nd� _ s 4k' OM,(tension allowable)=Q7.5)[(f'.)"](S)= 710 in-lb/in Factored uniform bearing,w„=P„/A,.= 16 Ib/in/in 6 M.=w„LZl3=(w„)[(b-(2'))12)zj/3= 58.22 in-lb/in-Deft.End Mt=30 in-lb/in r-,r.t� u a".) ka ��_ Sr°a.. �at dene°tw a"d) ,•+. ..MAW . . . . � n[— S . . . . . . . . NEI M W M 0082<10 OK S•.. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in / Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5•SaRT(rc)= 443.7 psi fffk I'r d �,i�I Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in3/ft g f I! Allowable Concrete Slab Bending Moment,M,IVFS=S•f,11.5= 1183.2 ft'Ibs/ft ' _ ---- Effective Cantilever Span Length(L. at M WI= 6.9 ft ..j,.� Total Length of Slab(l.+Width of Single Rack)= 7.8 ft 4/•) Trib.Width of Slab=Trib width of Rack= 8.0 It Weight of Concrete Slab at Rack(P.,n.)= 3118 Ibs t Resisting Moment-Concrete Slab at Rack,MRST(, )=P_ L./2= 145876 in•lbs - .f A "j i Load Combination#1: MOT= 2282 in•lbs T" MRST(R.k)'MRST(d•D)= 151926 in•lbs I_- Total Overturning FOS= 66.583 OK T Load Combination#2: MOT= 1157 in'Ibs 148076 in•lbs MRST(Rack)+ M RST(sbD)= Total Overturning FOS= 128.030 OK Wall-1 ST Wall Shelving/Single Sided « 60"Tall'T"5 Level 1403002901 7 52 p�M«ame Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No Max By om. MAV 04/14/15 Total Load per shelf= 150 lbs cne�w.v ev oak #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shell Weight of Unit= 100# Rack anchorage spacing/Thb width= 6 ft(Frames are assumed to be 4'-0"oc) Shelf depth= 18 in Total Shelf Load/Level h9= 0 in ha= 0 in h,= 0 in his= 0 in hs= 13.5 in 300 lbs h,= 13.5 in 3001bs ,fir_._....__ ...__. .. .. ... ....•�_ h3= 13.5 in 3001bs h2= 13.5 in 300 lbs ht= 6 in 300 lbs ....,. : \.__.. ­=77 Total Shelf Height,Ht= 60 in Unit Height,H„= 60 in Unit Base Depth,D= 11 in Load Case 1 (Load Gazes per RMI sect 2,6 8(l)) Load Case 2*(Load Gazes per RMI sect.2.6.8(2)) 5 3 Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(Ip)= 0.090 W. 3 Total Wt,W,_(0.67)[0.67PL]+DL= 773 Ilbs Total Wt,W,_(0.67)[(1)PL]+DL= 301 lbs - -''"°°°"°•° •""• ' "°- 1 Base Shear,V=C,IpW,= 69.3 lbs Base Shear,V=C,I^= 27.0 lbs { a Horizontal forces per level,F.=CV(RMI sect 2.6.6) Horizontal forces per level,F.=CwV(RMI sea 2.6.6) (Service Loads,E=0.7) Fy= 0.0 lbs @ 0 in(CM) (Service Loads) Fs= 0.0 lbs Note: F,,= 0.0 lbs @ 0 in(CM) F,,= 0.0 lbs €3 (CM)=Product Center of Mass Fr= 0.0 lbs @ 0 in(CM) F,= 0.0 lbs typically 6 inches above F8= 0.0 lbs @ 0 in(CM) Fs= 0.0 lbs „ IF 11 the top of shelf at each level, Fs= 15.2 lbs @ 66 in(CM) F,= 16.4 lbs @ 66in(CM) - ----„°:-- Fa= 12.1 lbs @ 52.5 in(CM) Fa= 0.0 lbs _. F,= 9.0 lbs @ 39 in(CM) F,= 0.0 lbs F2= 5.9 lbs @ 25.5 in(CM) F2= 0.0 lbs Ft= 2.8 lbs @ 12 in(CM) Ft= 0.0 lbs F„= 3.4 lbs @ 30 in(CM) F„= 2.5 lbs @ 30in(CM If= 69.3 lbs(@ Factored Loads) %f;= 27.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=Ef;h; Calculate Overturning Moment(Service),MOT=Efh; MOT= 2282 in-lbs MOT= 1157 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-lbs MRST= 2200 in-lbs Factor of Safety Factor of Safety FOS=2.65 FOS=1.90 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 lbs 9 lbs -;,ICHT cwur�E BTEE�ANGi10R R,= O lbs(No Uplift) O lbs(No Uplift) : STRAP 0". 226A ft)) Overturning FOS= 2.651>=1.5 1.902>=1.5 " „ PLACE STRAP ANCHORS AT Sliding Restraint force,RRsT/FOS=149lbs 16.124>=1.5 OK 64lbs/6.771>=1.5 OK EACH END FRAME ANO s-o-x F i!AAXF AT INTEMOR FRAtatES, '^eA ryP t UNQ Reactions(Factored Loads): LC#1 LC#2 ( a C� Base Shear(Rj= 35 lbs 13 lbs s 12,AN:.HOR EMITS PER Net Uplift(Ry)= 0 lbs 0 lbs x-'� :- ;: 5'AAP AT tNTER10R i:cA.siES Overturning+Gravity(P„)= 1178 lbs 421 lbs Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in "-- " f',= 3500 psi a., 0 in--Eccen.Of Anchor h,= 1.425 in 1.5(h,t)=2.25 in Conc.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in Shear Allowables Tension Allowables Steel Strength(0.75)QV„= 3303 lbs---ACI 318-08 Eq D-20 Steel Strength(0.75)0„= 10043 lbs o--ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)#Vpep= 1001 lbs o--ACI 318-08 Eq D-22 Concrete Breakout(0.75)#N,�= 1517 lbs< ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)�V�,= 703 lbs< ACI 318-08 Eq D-22 Pullout Strength(0.75)ONpe= 1252 lbs c-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)pVpb,= 1597 lbs o--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryout(0.75),liV_= 1634 lbs<_ACI 318-08 Eq D-31 Factored Tension Load(N„)= 0 lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(Vp)= 35 lbs 13 lbs MIN[(pNsa,TNcbg,(pNpn]/Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-1 BT Wall Shelving/Single Sided 54"Tall"S"5 Level 1403002901 Is s� 52 Prgen Wm• Northampton,MA-#2901 —.1 ce• IBC 2009/ASCE 7-05/2008 RMI(ANSI/MI-116.1-08) MAV 04/14/15 aw �• Punching Shear Check: H/2 L, X—X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P„)= 1138 ibs Slab Concrete Vc= 3500 si P la a \ Slab thickness(q= 4 in. Rack Post X-X= 2 in. °4 r Rack Post Y-Y= 2 in. ° b°= 24.00 in. I a I I ; r R= 1.00 V"= 22718 Ibs Eq.(22-10) o V„max= 15107 Ibs Eq.(22-10) 1 a = rpVn= 9064.38 lbs ° 4.t V„/AV„= 0.126<1.0 O.K. (Punching Perimeter) Slab tension based on Soil bearing area check: I BEAM FIXED AT ONE ENO,FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf ROTATE AT OTHER--UNIFORMLY DISTRIBUTED LOAD Max.Vertical load(Service)(P)= 774 Ibs Area reqd.for bearing(A„,)= 0.52 ft2 tt rant E4n:r.Undorm Lead -3"'t "b"distance= 8.62 in ii. Slab thickness(t)= 4.00 in R V. S=(1")(t)'/6= 2.67 inxhn .� rw maa.(at n.•d•nd) _ .ter, AMm(tension allowable)=�t(7.5)[(f',)"](S)= 710 in-lb/in "�` ! ! v >K, (•t rrn.ct.e•"a) eml arcs �s Factored uniform bearing,w„=P„/A.•e= 15 lb/in/in I' M„=w Lz/3=(wu)[(b-(2"))/2)z]/3= 55.95 in-lb/in-Deft. M End M1=28 in-lb/in _ .,°_�t -1 ",y tt=-a.•t M,��i 1 �enax. (?i aM•at•r•nd) M"/AMnt= 0.079<1.0 O.K. •m., aa.. a. "u 7lci Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 11 in Slab thickness(t)= 4.0 in , z Modulus of Rupture,f,=7.5'SQRT(fc)= 443.7 psi "- Concrete Slab Section Modulus,S=b(t)z/6= 32.0 in3Ift Allowable Concrete Slab Bending Moment,Md/FS=S`f,/1 5= 1183.2 ft'Ibs/ft Effective Cantilever Span Length(L.)at M,I= 6.9 ft ,) Total Length of Slab(1,+Width of Single Rack)= 7.8 ft q "$ I Trib.Width of Slab=Trib width of Rack= 8.0 ft —>- Weight of Concrete Slab at Rack(P—)= 3118 Ibsr r I 11 Resisting Moment-Concrete Slab at Rack,MRST(—)=P.. L,12= 145876 in•lbs Load Combination#11: MOT= 2077in'Ibs _ i .(.y"j" . MRST(R k)+ MRST(d )= 151926 in'Ibs .... Total Overturning FOS= 73.149 OK ... 1 Load Combination#2: MOT= 1051 in•lbs ]i - "., .,_ MRSTfwoq+ MRST(•ae)= 148076 in'Ibs Total Overturning FOS= 140.828 OK Wall-18S Wall Shelving/Single Sided ­ s « 54"Tall"S"5 Level 1403002901 s 52 Northampton,MA-#2901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(Y/N): No msce sy om MAV 04/14/15 Total Load per shelf= 150 Ids r #of Levels= Wall 5 LEVEL IBC 2009 /ASCE 7-05 /2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 25.00 psf/shell Weight of Unit= 100# Rack anchorage spacing/Trio width= 8 ft(Frames are assumed to be 4=0"oc) Shelf depth= 18 in Total Shelf Load I Level hs= 0 in he= 0 in hT= 0 in hs= 0 i hs= 12 in 300 Ibs h,= 12 in 300 Ibs •- - hs= 12 in 300 Ibs h2= 12 in 300 Ibs h,= 6 in 300 Ibs Total Shelf Height,Ht= 54 in Unit Height,H.= 54 in - Unit Base Depth,D= 11 in rv_ Load Case 1'(Load uses per RMI sect.2.6.e(t)) Load Case 2'(Load cases per RMI sect.2.6 8(2)) Seismic(C)(Ip)= 0.090 W. Seismic(C,)(Ip)= 0.090 W, Total Wt,W,_(0.67)[0.67PLI+DL= 773 Ibs Total Wt,W,=(0S7)[(1)P1_]+DL= 301 Ibs Base Shear,V=CsIpW,= 69.3 Ids Base Shear,V=CIpW,= 27.0 Ibs Horizontal forces per level,F.=C,,,V(RMI sect 2.6.6) Horizontal forces per level,F.=C„,V(RM1 sect z 6.6) t ,, ;..'. ar, (Service Loads,E=0.7) Fs= 0.0 Ibs @ 0 in(CM) (Service Loads) Fe= 0.0 Ibs w Note: FS= 0.0 Ids @ 0 in(CM) Fe= 0.0 Ibs i3 (CM)=Product Center of Mass F7= 0.0 Ids @ 0 in(CM) Fr= 0.0 Ibs typically 6 inches above FS= 0.0 Ibs @ 0 in(CM) F6= 0.0 Ids the top of shelf at each level. Fs= 15.0 Ids @ 60 in(CM) FS= 16.4 Ibs @ 60in(CMl Ft= 12.0 Ids @ 48 in(CM) F,= 0.0 Ibs Fs= 9.0 ids @ 36 in(CM) F,= D.0 Ids Fz= 6.0 Ibs @ 24 in(CM) F,= 0.0 Ids F,= 3.0 Ids @ 12 in(CM) F,= 0.0 Ibs Fu= 3.4 Ids @ 27 in(CM) F„= 2.5 Ibs @ 27in(CM) If,= 69.3 Ibs(@ Factored Loads) IfI= 27.0 Ids(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),MOT=If;h; MOT= 2077 in-Ibs MOT= 1051 in-Ibs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 6050 in-Ibs MRST= 2200 in-Ibs Factor of Safety Factor of Safety FOS=2.91 FOS=2.09 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R,= 24 Ibs 9 Ibs ((( Ry= 0 Ibs(No Uplift) 0 Ibs(No Uplift) :tcrrn,�ce STEE:ANt'.NQR Overturning FOS= 2.913>=1.5 2.092>=1.5 ",,. STRAP STRAP AN HO PLACE STRAP ANCHORS AT Sliding Restraint force,RRST/FOS=144lbs/5.932>=1.5 OK 62lbs 16.518>=1.5 OK i• k EACH ENO FRAME ANO a'-a-oc PAAx9 AT WTER':CSR FRAMES, Tlep%ONO. Reactions(Factored Loads): LC#1 LC#2 Base Shear(R„)= 35 Ibs 13 Ibs Net Uplift(Ry)= 0 Ib :2SANC"CR ar.LTS PER s 0 Ibs �- *' sitxaw AT RNTERIOR FRAMES Overturning+Gravity(Pa)= 1138 Ibs 401 Ids ,%- Anchor Design(using"Cracked Concrete"Properties) Try:318"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. • E i Embedment= 2.125 in f'p= 3500 psi e,;= 0 in<--Eccen.Of Anchor h,= 1.425 in 1.5(h„)=2.25 in Conic.thickness,t= 4 in #of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in As,= 0.103 in Shear Allowables Tension Allowables Steel Strength(0.75)�V„= 3303 Ibs<-ACI 318-08 Eq D-20 Steel Strength(0.75)�N„= 10043 Ibs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)0vs,= 1001 Ibs<-ACI 318-08 Eq D-22 Concrete Breakout(0.75)dN,�= 1517 Ibs<-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0.75)mVpN= 703 Ids<-ACI 318-08 Eq D-22 Pullout Strength(0.75)�NP,= 1252 Ibs<-ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vsb,= 1597 Ibs<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryoul(0.75)OV_= 1634 Ids<--ACI 318-08 Eq D-31 Factored Tension Load(N")= 0 Ibs 0 Ibs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V„)= 35 Ibs 13 Ids MIN[WNsa,rpNcbg,(pNpnl/Nu= 99.99>2.5-OK-IBC I CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-i8S Walt Shelving/Single Sided a<,N. s � 41a sz 54"Tall"S"5 Level 1403002901 P'4e Name Northampton,MA-#2901 .ar er om. IBC 2009/ASCE 7-05/2008 RMI(ANSI/MH16.1-08) MAV 04/14/15 cb,r�aa Sr rkr Punching Shear Check: I-,/2 X-X H/2 (Design per section 22.5.4 ACI 318-08) Max.Factored Vertical Load(P.)= 1202 Ibs °-- --- Slab Concrete f'.= 3500 psi Slab thickness(t)= 4 in. e T,- Rack Post X-X= 2 in. a° Rack Post Y-Y= 2 in. bu= 24.00 in. I ° I I � P= 1.00 V"= 22718 Ibs Eq.(22-10) V„max= 15107 Ibs Eq.(22-10) ` AVn= 9064,381bs V„/OVn= 0.133<1.0 O.K. �bo (Punching Perimeter) Slab tension based on Soil bearing area check: ( BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT Allowable soil bearing= 1500 psf ROf ATE AT OTtiER--UNIFORMLY DISTRIBUTED LOAD Max.Vertical Load(Service)(P)= 797 Ibs r Area regd.for bearing(A,)= 0.53 ft � r Totat Eauia Uniform Land -s "b"distance= 8.74 in Slab thickness(t)= 4.00 in it v. S=(1")(t)'/6= 2.67 in3/in +a asaa.(atbaae ma3 yWra 9 0MM(tension allowable)=0t(7.5)[(f j-](S)= 710 in-lb/in Factored uniform bearing,w„=Pu/A_�= 16 Ib/in/in M„=wuLZ/3=(w,J[(b-(2"))/2)z]13= 59.58 in-Ib/in-Defl.End Mt=30 in-Ib/in z('� ' ' ' . . • -',U.-3,a, oR MAMnt= 0.084<1.0 O.K. ao �assanwaaaa�e) iaci I aaa,.. as ita_. Shelving Fixture FOS Overturning with Resistance from Effective Weight of Slab on Grade: Width of Single Rack= 9.5 in Slab thickness(t)= 4.0 in Modulus of Rupture,f,=7.5'SCRT(fc)= 443.7 psi '. ) - ]3"'{i Concrete Slab Section Modulus,S=b(t)2/6= 32.0 in3/ft Allowable Concrete Slab Bending Moment,M,,/FS=S-f,/1 5= 1183.2 ft•Ibs/ft Effective Cantilever Span Length(I-j at My,= 6.9 ft ) k l Total Length of Slab(k+Width of Single Rack)= 7.7 ft Trib.Width of Slab=Trib width of Rack= 8.0 R E r L- 1 Weight of Concrete Slab at Rack(P )= 3068 Ibs ( x, ( Resisting Moment-Concrete Slab at Rack,MRSTpi,n)=P_ Lr12= 141235 in'Ibs A ,° , Load Combination#1: MOT- 2077 in•lbs I�-. MRST(R )+MRST(..b)= 146460 In`lbs _..j.. f Total Overturning FOS= 70.517 OK ) 1....., Load Combination#2: MOT= 1051 in9bs MRST(R x)+ MRST(wb)= 143135 in`Ibs 4 Total Overturning FOS= 136.130 OK Wall-12S Wall Shelving/Single Sided pn- 54"Tall"S"5 Level 1403002901 3 sz `1w Name Northampton,MA-92901 Seismic Importance Factor= 1.5 Supported on Elevated Floor(YIN): No -By MAV 04/14/15 Total Load per shelf= 150 lbs cneo�aa Br #of Levels= Wall 5 LEVEL IBC 2009/ASCE 7-05/2008 RMI (ANSI/MH16.1-08) Uniform Weight per level= 37.50 psf/shell Weight of Unit= 100# Rack anchorage spacing I Trib width= 8 It(Frames are assumed to be 4'-0"oc) Shelf depth= 12 in Total Shelf Load/Level hs= 0 in hg= D in hT= 0 in h6= D in hs= 12 in 300 Ibs h,= 12 in 300 lbs hs= 12 in 300 lbs hz= 12.in 300lbs h1= 6 in 300 lbs Total Shelf Height,Hr= 54 in Unit Height,H„= 54 in Unit Base Depth,D= 9.5 in 1 Load Case 1 (Load cases per RMI sect.2.6.9(1)) Load Case 2*(Load cases per RMI sect.26.6(2)) .... 1 Seismic(C,)(Ip)= 0.090 W, Seismic(C,)(I,)= 0.090 W, , Total Wt,W,=(0.67)[0.67PL]+DL= 773 lbs Total Wt,W,=(0.67)[(1)PL]+DL= 301 lbs Base Shear,V=C,l^= 69.3 lbs Base Shear,V=C,IpW,= 27.0 lbs Horizontal forces per level,F,=C,,,V(RMI sect 2.6.6) Horizontal forces per level,F.=C,,,V(RMI sect 26.6) : „� „�;... _ _,.::.„ s,,-.-- ----- (Service Loads,E=0.7) Fs= 0.0 lbs @ 0 in(CM) (Service Loads) Fs= 0.0 lbs Note: F6= 0.0 lbs @ 0 in(CM) F6= 0.0 Ibs (CM)=Product Center of Mass Fr= 0.0 lbs @ 0 in(CM) Fr= 0.0 lbs . typically 6 inches above F6= 0.0 lbs @ 0 in(CM) F6= 0.0 lbs the top of shelf at each level. F5= 15.0 lbs @ 60 in(CM) F,= 16.4 lbs @ 60in(CM) F,= 12.0 lbs @ 48 in(CM) F,= 0.0 lbs Fs= 9.0 lbs @ 36 in(CM) Fs= 0.0 lbs Fz= 6.0 lbs @ 24 in(CM) Fz= 0.0 lbs F1= 3.0 lbs @ 12 in(CM) F1= 0.0 lbs F„= 3.4 lbs @ 27 in(CM) F„= 2.5 lbs @ 27in(CM) If,= 69.3 lbs(@ Factored Loads) If;= 27.0 lbs(@ Factored Loads) Calculate Overturning Moment(Service),MOT=If;h; Calculate Overturning Moment(Service),MOT=If;h, MOT= 2077 in-lbs MOT= 1051 in-lbs Calculate Resisting Moment(Service),MRST Calculate Resisting Moment(Service),MRST MRST= 5225 in-lbs MRST= 1900 in-lbs Factor of Safety Factor of Safety FOS=2.52 FOS=1.81 'Load cases are per ASCE 7-05 sect.15.5.3.2 Reactions(Service Loads): LC#1 LC#2 R„= 24 lbs 9 lbs R,= 0 lbs(No Uplift) O Ibs(No Uplift) STPAP tI"-22GA thk?NC R 4 PLACE S arr 3AN HO Overturning FOS= 2.516>=1.5 1.807>=1.5 _ z� PLACE BTRA?AN ANCHORS AT Sliding Restraint force,RRST I FOS=1511bs/6.24>=1.5 OK 65lbs/6.917>=1.5 OK _ EACH EN FRAME AND a•O-oc 0-4AXI AT INTEWOR FRARIES, TVP;UNO, Reactions(Factored Loads): LC#1 LC#2 Base Shear(Rj= 35 lbs 13 lbs ' I � � �-�••^ l2Y 0.NU11CSR 66iT8 PER Net Uplift(Ry)= 0 lbs 0 Ibs .. - Srt1AP AT FN'FERIOR FRAMES .......... Overturning+Gravity(P„)= 1202 lbs 433 lbs Anchor Design(using"Cracked Concrete"Properties) 1 Try:3/8"0 Powers Wedge-Bolt+Screw Anchor 2 1/8"embed. Embedment= 2.125 in f',= 3500 psi r - a.- D in--Eccen.Of Anchor h,= 1.425 in 1.5(h,l)=2.25 in Conc.thickness,t= 4 in It of Anchors,n= 2-anchors per connection used for capacity Sx= 3.5 in A„= 0.103 in' Shear Allowables Tension Allowables Steel Strength(0.75)#V„= 3303 lbs;<-ACI 318-08 Ect D-20 Steel Strength(0.75)QN„= 10043 lbs<-ACI 318-08 Eq D-3 Concrete breakout Y dir.(0.75)#V�,= 1001 Ibs-ACI 318-08 Eq D-22 Concrete Breakout(0.75)mNW= 1517 lis<-ACI 318-08 Eq D-5 Concrete breakout X dir.Single(0,75)OV,by= 703 lbs;---ACI 318-08 Eq D-22 Pullout Strength(0.75)dNp„= 1252 lbs;<--ACI 318-08 Eq D-14 Concrete breakout X dir.Both anchors(0.75)�Vebv= 1597 lbs;<--ACI 318-08 Eq D-22 LC#1 LC#2 Concrete pryoul(0.75)4V,,= 1634 lbs<-ACI 318-08 Eq D-31 Factored Tension Load(Nu)= 0 lbs 0 lbs LC#1 LC#2 max tension stress ratio(TSR)= 0.000 OK No Uplift 0.000 OK Factored Shear Load(V j= 35 lbs 13 lbs MIN[(pNsa,TNcbg,IpNpn]i Nu= 99.99>2.5-OK-IBC/CBC,sect 1908.1.9(Brittle Steel Reduction) max shear stress ratio(VSR)= 0.035 OK 0.013 OK Combined shear and tension stress ratio(TSR+VSR)= 0.035<1.2 OK-LC#1(controls) USE: NO UPLIFT-PROVIDE MINIMUM ANCHORAGE Wall-12S Pm,. No. Sheet No Of Gondola (Shelving)Anchorage Design 1403002901 2 52 Pmj.ct Ne Northam ton,MA-#2901 Store Latitude/Longitude Coordinates(per Google Earth): M.d.By D.. N 42e 20'29" 42.341389 MAV 04/14/15 W 72°38'38" 72.643889 Checked By D. . IBC 2009 / ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Response Modification Factor,R= 4.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,Ro= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Cd= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= II IBC,Table 1604.5 Importance Factor,Ip= 1.5 ASCE-7 Sect.15.5.3 0.2 Second Period Accel.,Se= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 Fa= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F„= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 SMS= 0.358 IBC eq.16-36,ASCE-7 eq.11.4-1 SM,= 0.158 IBC eq.16-37,ASCE-7 eq.11.4-2 SDS= 0.239 IBC eq.16-38,ASCE-7 eq.11.4-3 So,= 0.106 IBC eq.16-39,ASCE-7 eq.11.4-4 Seismic Design Category --based on SDs= B IBC Table 1613.5.6(1),ASCE-7 Table 11.6-1 --based on SD,= B IBC Table 1613.5.6(2),ASCE-7 Table 11.6-2 Cs= 0.060 RMI sect.2.6.3 Ca,min= 0.011 RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear,V=CSIPW= 0.090 W RMI sect.2.6.2 Load Combination:(0.67-LC#1 or 1.0-LC#2)DL+/_(0.7)EL-RMI 2008,sect 2.6.8-Seismic Overturning Stability(ASD) (0.67)= 0.670 DL <---LC#1,per RMI,2.6.8 (1.0)= 1.000 DL <---LC#2,per RMI,2.6.8 (0.7)= 0.700 EL (0.7)= 0.700 EL Load Combination:(0.9-0.2Sp5)DL+/-EL-ASCE 7,sect 2.3.2&12.4.2.3-Seismic Uplift Critical Strength Design (0.9-0.2SDS)= 0.652 DL (1.0)= 1.000 EL Load Combinations for ASD Member Design(2008-RMI,Section 2.1): DL=Dead Load for RISA Frame analysis PL=Maximum load from pallets or products stored on racks LC#1: DL EL=Seismic Load-RMI section 2.6.6-Vert.Distribution LC#2: DL+PL(all shelf levels) LC#3a: (0.6-0.11 SDS)DL+(3/4)[(0.6-0.14SIAPL.,-(0.7)EL] <---EL and PL.,=(0-67)PL at each shelf level 0.5737 DL 0.4249 PLaPP 0.7500 EL LC#3b: (0.6-0.11 SDs)DL+(3/4)[(0.6-0.14SDS)PLapp-(0.7)EL] <---EL and PLapp=(1.0)PL at top shelf only 0.5737 DL 0.4249 PLapp 0.7500 EL Project No Sheet No'. of Gondola (Shelving)Anchorage Design 1403002901 1 l 52 Project Name: Northam ton,MA-#2901 Store Latitude/Longitude Coordinates(per Google Earth): Made BY Date: N 42e 20'29" 42.341389 MAV 04/14/15 W 72°38'38" 72.643889 Checked By Date IBC 2009 / ASCE 7-05 / 2008 RMI (ANSI/MH16.1-08) Response Modification Factor,R= 4.0 ASCE-7,Table 15.4-1 Overstrength Factor,Omega,00= 2.0 ASCE-7,Table 15.4-1 Deflection Amplification Factor,Cd= 3.5 ASCE-7,Table 15.4-1 Detail Reference Section= 15.5.3 ASCE-7,Table 15.4-1 Occupancy Category= II IBC,Table 1604.5 Importance Factor,Ip= 1.0 ASCE-7 Sect. 15.5.3 0.2 Second Period Accel.,Se= 0.224 g IBC Figs.1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 1.0 Second Period Accel.,S,= 0.066 g IBC Figs. 1613.5(1-12),ASCE-7 Figs.22-1 thru 22-14 (Soil)Site Class= D ASCE-7,Table 20.3-1 Fa= 1.60 IBC Table 1613.5.3(1),ASCE-7 Table 11.4-1 F„= 2.40 IBC Table 1613.5.3(2),ASCE-7 Table 11.4-2 SMS= 0.358 g IBC eq. 16-36,ASCE-7 eq. 11.4-1 SM,= 0.158 g IBC eq. 16-37,ASCE-7 eq. 11.4-2 SDS= 0.239 g IBC eq.16-38,ASCE-7 eq. 11.4-3 SD,= 0.106 g IBC eq. 16-39,ASCE-7 eq. 11.4-4 Seismic Design Category --based on SDS= B IBC Table 1613.5.6(1),ASCE-7 Table 11.6-1 -based on SD,= B IBC Table 1613.5.6(2),ASCE-7 Table 11.6-2 CS= 0.060 RMI sect.2.6.3 Cs,min= 0.011 RMI sect.2.6.3 and ASCE-7 sect.15.5.3 Base Shear,V=CSIPW= 0.060 W RMI sect.2.6.2 Load Combination:(0.67-LC#1 or 1.0-LC#2)DL+l-(0.7)EL-RMI 2008,sect 2.6.8-Seismic Overturning Stability(ASD) (0.67)= 0.670 DL <---LC#1,per RMI,2.6.8 (1.0)= 1.000 DL <---LC#2,per RMI,2.6.8 (0.7)= 0.700 EL (0.7)= 0.700 EL Load Combination:(0.9-0.2SDS)DL+/-EL-ASCE 7,sect 2.3.2&12.4.2.3-Seismic Uplift Critical Strength Design (0.9-0.2SDS)= 0.852 DL (1.0)= 1.000 EL Load Combinations for ASD Member Design(2008-RMI,Section 2.1): DL=Dead Load for RISA Frame analysis PL=Maximum load from pallets or products stored on racks LC#1: DL EL=Seismic Load-RMI section 2.6.6-Vert.Distribution LC#2: DL+PL(all shelf levels) LC#3a: (0.6-0.11SDs)DL+(3/4)[(0.6-0.14SDS)PLapp-(0.7)EL] <--EL and PLapp=(0.67)PL at each shelf level 0.5737 DL 0.4249 PL., 0.7500 EL LC#3b: (0.6-0.11SDS)DL+(3/4)[(0.6-0.14SDS)PLapp-(0.7)EL] <--EL and PLapp=(1.0)PL at top shelf only 0.5737 DL 0.4249 PLapp 0.7500 EL Johnston BurkholderAssoc ates (;' () NsULTING STRUCTURAL F N (. IN El--, RS STRUCTURAL FIXTURE ANCHORAGE CALCULATIONS FOR Northampton, NU 180 N King St Store 92901 PREPARED FOR CITY OF NORTHAMPTON, MA "OL•°'4A��4gd ,9 iGsE:PH n. FLAPvF,G,4;i'd STRUG 1 OF ,L v N©. 50750 JBA PROJECT #1403002901 930 CENTRAL,KANSAS CITY,MO 64105 PHONE (816)4214200 FAX(816)4214381 9 � f$ t� C oPE(Z'CLES ��. (L bN\ Z o0o T�AY-C WUL SE 'CLON P�- 'Or �X�S'i trig b1sT5 4" I.D.L. '114 I.D. =+ -� �1�1121' _ Cl 4.. I6 i i i 16 2"' � i i2 52 q 32 cl ,L 6,IL Area: I.baa7 rcL In I6 Ib - � - — Perimeter: 25.7055 in Centrold: X: 0.0000 in END BEARING Y: 12.7117 in- �- Moments of inertia: X: 185.5574 in 4 MIN Y: 4.5345 in 4 Radll of gyration: X: 10.4455 In • — i i i Y. 1.7035 In, [4" O.D. IT lYP SECTION TOP CHORD Area: 1.0011 sq in Perimeter. 11.2154 In Gentrold: X: 0.0000 in Y. -0.5706 In Moments of inertia: X: 0.4131 in 4 Y: 3.5245 in 4 �y Radii of gyration: X: 0.6424 in Y: 1.5165 in N BOTTOM CHORD Area: 0.6586 sq In I Perimeter: 11.4251 In Gentrold: X: 0.0000 In Y: 0.2202 In Moments of inertia: X: 0.0515 in 4 .= Y: 1.4056 in 4 R4d11 of gyration: X: 0.2726 in r,° Y: 1.4204 in WALLACE DESIGN PROGRAM Revised 07115110,Matthew Gebhardt Page 7 Copyright Date 4/14/2015 Sheet No. of Project Northampton, MA Subject web reinf for new comp/cond units OPEN WEB STEEL JOIST REINFORCING VmAx= 6.89 KIPS (EVALUATED AT ENDS) VALLOW=WALLOWU2= 4.74 KIPS V(MAX)AT ENDS= 6.89 KIPS (AT 0.0 FT FROM LEFT END) DETERMINE FORCE IN WEB MEMBER AT END OF JOIST U/"— PER exisr. I 24 IN 0= 90-tan-'(11/d)= 31.4 DEGREES f 'I a=tan-'(2d/12)= 59.0 DEGREES DEPTH C TE= RE/SING= 13.22 KIPS =20.2 IN E TE CE=TE(SIN�)/SINa= 8.04 KIPS n TRY: L1-1/4X1-1/4X1/4 (EA.SIDE OF JOIST) Fy=I 50 KSI E= 79 0-0-01 KSI I1 = 36 IN 12=[-24 IN Fu= 58 KSI WELD: 0.188 1.50 IN(EA.MEMBER,EA.END) JOIST WEB MEMBER LAYOUT CHECK END WEB REINF AND WELD FOR TENSION AREA,Ag= 1.126 SQ IN (2 MEMBERS,ONE EACH SIDE) YIELD,F'y= 48.10 KSI (F'y=Fy-fp,PRESTRESS OF EXISTING JOIST DUE TO DEAD LOAD) V LAG,U= 0.6 TENSION CAPACITY= 19.59 KIP MEMBER OK FOR TENSION Pn F 'y A 8 Fu UA S WELD CAPACITY= 14.32 KIP WELD OK FOR TENSION Q t 1 .67 2 .00 CHECK FIRST COMPRESSION WEB REINF AND WELD LENGTH OF MEMBER= 23.3 IN rX= 0.369 IN Urx= 63 (KL/r)'= 119 (FOR ANGLES ONLY) KUr= 119(USED) Fe= 20.07 KSI Fcr= 17.60 KSI COMP CAPACITY= 11.87 KIP MEMBER OK FOR COMPRESSION WELD CAPACITY= 14.32 KIP WELD OK FOR COMPRESSION Angles F. _ 2 E blt__<Ar e (KL l r)z Ll x <_80-->(KUr)'=72+0.75L1 r F, >_ 0.44 F'y Fe, = F'r (0.658)F F° Ll rx >80-->(KL1r)'=32+1.25L1 r_<20 Fe < 0.44 F'y F, = 0.877 Fe Pn F, A g Q, 1.67 WALLACE DESIGN PROGRAM Revised 07115110,Matthew Gebhardt Page 2 Copyright Date 4/14/2015 Sheet No. of Project Northampton, MA Subject web reinf for new comp/cond units OPEN WEB STEEL JOIST REINFORCING 3. Reinforcement Calculations Shear 45.4%Overloaded(w/o reinforcing) Add'I Shear Force Req'd= +/-6.89 kips Input Force in Web Members: Web Reinforcing Size: L1-1/4X1-114X1/4 (ea side) Tension= 13.22 kips Weld Size= 0.1875 in (tot ea member, Compression= 8.04 kips Weld Length= 1.50 in ea end) Y Reinforcing Capacity Tension= 19.59 kips o.k. Compression= 111.87 kips o.k. 0/' aul Tu'�T k L h Weld Capacity= 14.32 kips o.k. 0 vZ 6,h I�. 1b Z " -- WALLACE DESIGN PROGRAM Revised 07115110, Matthew Gebhardt Page 1 Copyright Date 4/14/2015 Sheet No. of Project Northampton, MA Subject web reinf for new comp/cond units P max=894 Ibs OPEN WEB STEEL JOIST REINFORCING AISC 360-05 ASD, SJI TD#12 1. Input /vlpA/�/6� L�E.I°7!^�J Std Gri•LCS Joist Size= Chord Depth,d= 20.2 in (For SP joist,enter d,TL,and LL. Reinforcing Total Load Capacity= 237 plf For standard joists,leave blank to Live Load Capacity= 145 plf import from SJI tables.) Web Reinforcing Length, L= 40.00 ft (KCA& 0416. bF,516N LOAD Tributary Width,s= 6.00 ft � Sv�►P'l"i �5 Dead Load,wdead= 15 psf L Const Dead Load= 10 psf (Tot DL on joist during reinf) X Live Load,wi1Ve= 35 psf (or snow load) P Collateral Load,wcoi= 0 psf wLIVE wDEAD Point Loads: 1 2 3 4 5 6 T P(lb) 894 894 0 0 0 0 I'vVyytt; X(ft) 1 16.33 1 23.67 1 0.00 1 0.00 1 0.00 1 0.00 Point Load Type: DEAD (DEAD,or LIVE) RL R, 2. Calculation Summary Load Conditions: Joist Capacities: -D-e-aff Load, dead= 9010 pI Depth,d= 20.2 in Live Load,Wiive= 210.0 plf Total Load Capacity= 237.0 plf Collateral Load,Woo,= 0.0 plf Live Load Capacity= 145.0 plf Total Load,Wtot= 300.0 plf Prestress in joist,fp= 3.8% (due to in-place dead load) Left Reaction RL= 6.9 kips Allowable Shear= 4.7 kips(at end) Right Reaction, RR= 6.9 kips Allowable Moment= 47.4 k-ft Max Moment= 74.6 k-ft Stress Reversal= 0.0 ft(left side) Shear Diagram 8.0 -••- APPLIED LOADING 6.0 ALLOWABLE 4.0 N 2.0 Y0.0 �' N -2.0 U7 -4.0 -6.0 -8.0 0 10 20 30 40 50 Distance(ft) 45.4%Overloaded(w/o reinforcing) Date Sheet No. of C Job Subject Reference I S� CO N T. g y w8LO eTA/N PL)+T6 1\-,ND ZRgNIF-/� �� !f coT� C Tf-t 3e/Ib" G►Ukt w(!:(,a , = 6 " (�t�n�) [EN6 (,)LUJ5 Or- GkGZO gtmN] I6 -jam ? 5.7k V1 b�� - VF-n--r f%u(.ce, F�CSisjEf) wt�t.o g-rWNI Af�T404rnF_ArT p(*fC/Srq j tual:_ t,-)4-rt AN 6t 5/-rj 6 ft,�-f E ANPJ n>v �c����g��M (,j Q_DFQ FlU T w Lb , 4, 55 vM( Z" -FO-04L w80� AVr. �6LC i ' `f KY �� �lLccr wiELO , 3° =.Iep.5f- i)P 5ri+f qN61E l6" My X1/14 r�� r -rQ 6?9 6 I 109 /1 Ll 14. IA31L ib , i 1 r i i I Date Sheet No. y of Job Subject Reference z) CONT Fy-so c = 107,0 Erg= C9.Zq� so -a -"Ry WG 4-6 A-r MID-POINT- PA" r-A PAN,51- ITT 3PAGw4 i k Ig.Y o.ye � cam- 0.K8�4 6 zy 3 CG Fq = 0.q,?9xSD — 2q V L, > I U51r, Zr• « l/ r. iatFT L G - I s�8 � ln�� DS !-foP-0 REPNF 7b e-1C,1s-r. I 3) C t-u(-k WeS CAPAo-�V — (ZrlF bPCN Wtf3 S_iEEL nt.s°r PP-lNro\)T rorz (NCR CA{,G � �-b j s l Pik-11\i D\IT �,O R- WEBS' � INI P L`lG j t,�S�: ��t�hd. �'�' G►�z°° � �b`` 1^�"ILL��' ►�/�I,J �� Si1� ��°�NG� li���1� 5� u4eCk S HEAP- PL .rr 51rR sS --S�►�T �M6r T cos 31-L13• =69y4 ILs 31,y3° -r I Date Sheet No. of (� Job Subject Reference I r = s�l.l, N3 Cc, ' 0-Llg6 -1 48� 3 A15L 1�� £ i U s� � =sa 1=�; I V,j%S-o k5 C� = I u�•0 r �� (�•t'I0 ---'a Ca= OM-72- 0 4 7 Z x 5 b = 13•b k-571 2013 ks,' ✓ USE L I%x 1 ,G ( 5Q k5; ( Z) Dt�r,R-M►rv� K�(�'l� w�G�iN� �a2 GI�dCG� (�.�1�,� i i R4 wtr p , Feu..,VT )v6Ln CAA&I7y - 0.1-Zs f,� X 6 =1 3.712"WK MAV AN6&L F6(Lc.lr - (0,6 uSb IGS)') u 0.56 A-717- `� jr�•s(- - 1$�, 6 ��y She t JAI Z UVG9-6 A S,E o1�1 ii(,GoW TS t E, M b fN W S v �'v Q'p s Heft R ��UW j 6.9 k j ih, p.ZH 3 F---- -- �� l�l•�t ��''� 4rr6�E Q = A X Z Q kv%&mF-N r Aguj r ueuTlz-rat- Axis D AP-6,q f3 l w til Oo21�uwTA�, 506K PL 4NE5 AND (gl'rs lM- 54cc i -`V- PP9I6f) 41' 64 PRNtL PT �) PA-MgL PT & 7-0 C)C, j tt5N(',T4 OF WLLO a-t- 62'b — o,aq 3 k/,, X ZN '` Date Sheet No. a of Job Subject Reference P � N6v J ►o Orp REQWLS M-ENT S M T'aTAL = w�2 + P0� (�-ojs-r sp- 60_0, oC-) 16.33' /ATUTAL X6) k y Z a- 8 /hsx1633 ' yO 1 oo00b ° $x)�DO0 -7y,� 1- x -7q,6 k-FR x1OOD = 3-73 PO C7it.Z09 L1 a-'14 OY Q C�l� ) k y�) ��y= 6Bgzl 1L� Z z �Fb15T g-r=.INr- *i5xls,rjm(. S WILL- GoNST)jC;'rjvq - vkDDi ttbt�t�L �I�Rt> 1'c�(Lc.� = Mize % -MAcuuw_ -7 gz"-O.s `- °.s 9112- - L ( !��! X 1 � k '�i� C°N3 (Fy= 36 �c ep c�tvl�oS 14= Z51 0, 563 i�2 OU IJ Gf3t✓Gl< 6oMP9ES51014 CI+OP-J APPTL--R. 2EIAJP. �Q= qq, 2 0. 83 ks," f?C)MF 7-oA cOaR6 Ty, T-OP COOI?A) = 0 J Y 131 ,k`t I Sic 1�1�1 A = 1.17-6 +/.00t 12'7 1k z D6FT I r _ T - 0*31 1r1lt 0.14y r Ia qq Date Sheet No. of Job*cT44AMPniq',MA - Subject Ni✓W pAgtl4 OAj(,TS Reference New vN1Ss l� "MPS LSS&O?- WT NN0o IL I I.)S)e H4 Vv/( F �0= p9q JL 5 z)C tN 0I -:0 S:;F,2, WT Z rbv IL,, , P = 1.1; zY�o/y C _ -7 69 Ids pE516N ( f,)s 1DL= 1� psf 3olST 5Pr,0-04 OG LL c 7, j I SL- `{b psi x o.-7 -Z$.. b PS �— u5r= 3S� PiT f8k OV-O-OL pb-,�16N IND ANAV'61I GOMP0NCN--fs L,AW)IN IZOO15 121a too F1'I- C-/V6 LoNIE Pg+-,Abs pal- EXI S� 11V6ol °C t - ToIS-rS SPECIPl,EQ AS SS-t 77- 5 o oRig. �w�S • raR L-N°`} TL/LL.= ISO TA(3 t,F- LL i 5EcTI0N KoPF-(ZTJS OF FyASTING �o1s�S Istc-"b>.( -SEc`r(ON PgoflE(ZT)65 F4Lo VV1 ZOOD 1-Ay£OUff- ifevv Atop= I.001I iv, L = 21•7-0�i z ,� T/c M/a > M I,�W q-7,Li k. � �Q C = ZI I •��Z 0. i 6 i k1s t ING 144Y 9E- -70 K&I (Piq 06 USE, f -t0 k N GVkI-GS i 2009 IBC Seismic Tables Site Coefficient,Fa Table 11.4-1 and 1613.5.3(1) Site Mapped Spectral Response Acceleration at Short Periods(Ss) Class Ss<=0.25 0.5 0.75 1 Ssr_1.25 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.20 1.20 1.10 1.00 1.00 D 1.60 1.40 1.20 1.10 1.00 E 2.50 1.70 1.20 0.90 0.90 F Site Coefficient,Fv Table 11.4-2 and 1613.5.3(2) Site Mapped Spectral Res pons Acceleration at 1 Second Period S1 Class S1<=0.1 0.2 0.3 0.4 S1>=0.5 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.70 1.60 1.50 1.40 1.30 D 2.40 2.00 1.80 1.60 1.50 E 3.50 3.20 2.80 2.40 2.40 FI - --- --- --- - Seismic Design Category based on Short Period Response Acceleration (Table 1613.5.6(1)and 11.6-1) Value of joccupancy Category Sds I or II III IV Sds<=0.167 A A A 0.167<=Sds<0. B B C 0.33<=Sds<0.5 C C D 0.5<=Sds D D D S1>=0.75 E E F Seismic Design Category Based on 1-Second Period Response Acceleration (Table 1613.5 6(2)and 11.6-2) Value of Occupancy Category Sd1 I or II III IV Sd1<=0.067 A A A 0.067<=Sd1<0. B B C 0.133<=Sd1<0. C C D 0.2<=Sd1 D D D S1>=0.75 E E F 3. Design Loads for the elements of the structure,nonstructural components,and equipment supported by the structure: (Chapter 13 and Section 12.10) Max.Load=1.6 Sds Ip Wp= 0.375Wp(Equation 13.3-2) for Ip=1.5= 0.563Wp Min.Load=0.3 Sds Ip Wp= 0.070Wp(Equation 13.3-3) for Ip=1.5= 0.106Wp a. Check the Out-of-Plane Seismic Load on Bearing or Shear Walls: (Section 12.11) Fp=0.40 le Sds wp or.10 wp min.= 0.100Wp multiply by 0.7 for Allowable Stress Design= 0.070Wp b. Check the Seismic Load on Exterior Non-Structural Walls: ap= 1.00 (Table 13.5-1) Rp= 2.50 (Table 13.5-1) hxl= 0.00 ft. Height at floor attac Fp= 0.070Wp at floor hx- 16.83 ft. Height of roof attact Fp= 0.113Wp at roof hr= 16.83 ii- of the roof Fp(average of roof and floor)= 0.092Wp multiply by 0.7 for Allowable Stress Design= 0.064Wp c. Check the Seismic Load on the Parapets: ap= 2.50 (Table 13.5-1) Rp= 2.50 (Table 13.5-1) Assume parapet is attached at roof,therefore hx/hr=1. Fp= 0.282Wp multiply by 0.7 for Allowable Stress Design= 0.197Wp d. Check the Seismic Load on the Interior Partitions(non-masonry)supported at the roof: ap= 1.00 (Table 13.5.1) Rp= 2.50 (Table 13.5-1) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.113Wp multiply by 0.7 for Allowable Stress Design= 0.079Wp e. In Seismic Design Categories C,D,E,and F;check the Seismic Load for anchorage of concrete or masonry walls to a flexible diaphragm: (Section 12.11.2.1 and 12.11.2.2.2)Use section"a"if Seismic Performance Category B Fp=0.8 Sds le wp or.10 wp min.= 0.188Wp multiply by 0.7 for Allowable Stress Design= 0.131 Wp 1.4= 0.263Wp multiply by 0.7 for Allowable Stress Design= 0.184Wp' Note:In Seismic Design Categories C-F,the strength design forces for steel elements,excluding reinforcing steel and anchor bolts,of the wall anchorage system shall be 1.4 times the force otherwise required by section 12.11.2.2.2. But the minimum wall anchorage load for concrete or masonry walls is: (Section 12.11.2) Fp= 280 plf multiply by 0.7 for Allowable Stress Design= 196 pif f. Continuous Load Path and Interconnection: (Section 12.1.3) Fp=0.133 Sds wp or.05 wp min.= 0.050Wp multiply by 0.7 for Allowable Stress Design= 0.035Wp g. Connection to Supports: (Section 12.1.4) Fp=.05*dead+live reaction= 0.050 Rd+I multiply by 0.7 for Allowable Stress Design=0.035 Rd+I h. Check the Seismic Load of masonry walls to a rigid diaphragm:(Section 13.4.2) For the Body of the Wall Panel Connection: ap= 1.00 (Table 13.5-1) Rp= 2.50 (Table 13.5-1) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.113Wp multiply by 0.7 for Allowable Stress Design= 0.079Wp For the fasteners of the connecting system: ap= 1.25 (Table 13.5-1) Rp= 1.00 (Table 13.5-1) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.352Wp multiply by 0.7 for Allowable Stress Design= 0.246Wp However,for anchors in Concrete or Masonry per section 13.4.2: ap= 1.00 (Table 13.5-1) Rp= 1.50 (Section 13.4.2) Assume wall is attached at roof,therefore hx/hr=1. Fp= 0.188Wp multiply by 0.7 for Allowable Stress Design= 0.131 Wp 1.3= 0.244Wp'1.3= _E.171 Note:Per ASCE 7-05(13.4.2),Anchors embedded in concrete or masonry shall be proportioned to carry 1.3 times the force in the connected part due to prescribed forces. But the minimum wall anchorage load for concrete or masonry walls is: (Section 12.11.2) Fp= 280 pif multiply by 0.7 for Allowable Stress Design= 196 plf WALLACE DESIGN PROGRAM __ Revised 513/10, Kenna Chapin Copyright Date 4/10/2015 Sheet No. of ---- ------------------ Job Northampton,MA Subject 2009 IBC (Ch: 16)and ASCE 7-05(Ch: 11 to 13)Seismic Summary Loads Section 1613.1 of 2009 IBC excludes Chapter 14 and Appendix 11 A of ASCE 7 (Spreadsheet Assumes that the building is one story or low rise with a short period.) 1. User Input Values: (Single underlined values) Is your structure regular with a period<Yes (Yes or No,Re:Sections ASCE7 12.8.1.3) Is structure short period with a rigid diaphragm or with a flexible diaphragm with vertical elements of Seismic Force Resisting System spaced at 40 feet on center max.? No (Yes or No,Re:IBC Sections 1613.5.6.1 and ASCE 7-05 11.6) Mapped Spectral Response Acceleration for Short Periods,Ss= 0.220 (Figure 1613.5(1)or CD-Rom) Mapped Spectral Response Acceleration for 1-second Periods,S1= 0.066 (Figure 1613.5(2)or CD-Rom) Assumed Site Class(A,B,C,D,E,F)= D (Table 1613.5.2&Sec.1613.5.2) Building Category= II (ASCE:Table 1-1) Site Coefficient,Fa= 1.60 (Table 1613.5.3(1)) Site Coefficient,Fv= 2.40 (Table 1613.5.3(2)) Seismic Importance Factor,le= 1.00 (Table 11.5-1) Site Adjusted Spectral Response Acceleration for Short Periods,Sms= 0.352 (Section 1613.5.3,11.4.1, Site Adjusted Spectral Response Acceleration for 1-second Periods,Sm1= 0.158 and 12.8.1.3) Design Spectral Response Acceleration for Short Periods,Sds= 0.235 (Section 1613.5.4 and 11.4.4) Design Spectral Response Acceleration for 1-second Periods,Sd1= 0.106 Seismic Design Category based on short period= B (Use worst case except for Seismic Design Category based on 1-second period= B Section 1613.5.6.1) Seismic Design Category= B (Section 11.4.1 and 11.6) Basic Structural System Bearing Wall System (Table 12.2-1) Lateral Force Resisting System Ordinary Reinforced Masonry Shear Walls (Table 12.2-1) R= 2 (Table 12.2-1) Qo= 2(Re:Footnote g for.5 reduction for Flexible Dia.;(Table 12.2-1) Cd= 1.75 (Table 12.2-1) px,redundancy in x-dir.= 1.00(Redundancy is either 1.0 or 1.3) (Section 12.3.4) py,,redundancy in y-dir.= 1.00(Redundancy is either 1.0 or 1.3) (Section 12.3.4) p,=1.0 for Seismic Design Category-S ann=,re:12.3.4.1 for additional exceptions. 2. Design Loads for the Building Lateral Force Resisting System: If Seismic Design Category A,Need comply with Section 11.7 only. a. Find the Design Base Shear for the Lateral Force Resisting System: (Section 12.8) V=(Sds/(R/1))W= 0.117W multiply by 0.7 for Allowable Stress Design= 0.082W For the X-direction: E horizontal= 0.117W multiply by 0.7 for Allowable Stress Design= 0.082W For the Y-direction: E horizontal= 0.117W multiply by 0.7 for Allowable Stress Design=�b b83�P b. Find the Design Seismic Shear for the Diaphragm: (Section 12.10.1.1) Max of 0.2`le'Sds and section a 0.117W multiply by 0.7 for Allowable Stress Design= 0.082W but need not exceed 0.4'le'Sds 0.094W multiply by 0.7 for Allowable Stress Design=MVP For Seismic Design Categories C through F: The collector elements(drag struts)for the diaphragm shall be designed for the strength design values, Em=Do x Eh per Section 12.10.2.1 and 12.4.3.2. if the collector is designed using ASO methods,the strength of the member can be determined by using an allowable stress increase of 1.2(Section 12.4.3.3.) Em= 0.235W for Allowable Stress Design= 0.137W c. Find the Vertical Earthquake Load Component: (Section 12.4.2.2) E vertical=0.2SdsD= 0.047D multiply by 0.7 for Allowable Stress Design= 0.033D For design of foundations using ASD and where Sds<0.125,vertical force may be taken as zero. (Section 12.4.2.2) WALLACE DESIGN PROGRAM Revised:1010312013 Author:Katie Faulkner Date 4/10/2015 Sheet of Job Northampton,MA Subject WIND ANALYSIS:ANALYTICAL-ALL HEIGHTS METHOD ASCE 7-05,Section 6.5 3.Calculations-Component and Cladding Elements Kz,velocity pressure exposure coefficient= 0.87 Table 6-3 (use with qh) Kz,velocity pressure exposure coefficient= 0.98 Table 6-3 (use with qp) Kzt,topographic factor at hh=17.33ft= 1.00 Fig.6-4 (use with qh) t-f 3 Kzt,topographic factor at hp=30ft= 1.00 Fig.6-4 (use with qp) X Kd,wind directionality factor= 0.85 Table 6-4 I,importance factor= 1.00 Table 6-1 X 3 G,gust factor= 0.85 Section 6.5.8.1 15 ch,velocity pressure at hh=17.33ft= 15.33 psf E 6-15 3 X / 2 qp,velocity pressure at hp=30ft= 17.27 psf(Eq.6-15) 2 \X/ 4 Walls:trib.Area=100 sq.ft. qh GCp GCpI P 5 3 Zone 4 Interior Zone 15.33 -0.83 0.18 -15.5 psf 4 Zone 5 End Zone 15.33 -0.94 0.18 -17.2 psf 5 5 Zone 4 and 5 15.33 0.74 -0.18 14.1 psf Walls:trib.Area=200 sq.ft. qh GCp GCpI P `a j` Zone 4 Interior Zone 15.33 -0.78 0.18 -14.8 psf ,/a j� ✓ Zone 5 End Zone 15.33 -0.85 0.18 -15.7 psf Zone 4 and 5 15.33 0.69 -0.18 13.4 psf REFER TO FIGURES 6-1 la AND 6-1 lb Walls:trib.Area=400 sq.ft. qh GCp GCPI P Zone 4 Interior Zone 15.33 -0.74 0.18 -14.0 psf Zone 5 End Zone 15.33 -0.75 0.18 -14.3 psf Zone 4 and 5 15.33 0.65 -0.18 12.7 psf Parapets:trib.Area=50 sq.ft. qp GCp GCpI P Case A Zone 4 Interior Zone 17.27 0.79 -1.31 36.3 psf Zone 5 End Zone 17.27 0.79 -1.31 36.3 psf Case B Zone 4 Interior Zone 17.27 0.79 -0.88 28.8 psf Zone 5 End Zone 17.27 0.79 -1.04 31.6 psf Parapets:trib.Area=100 sq.ft. qp GCp GCpI P Case A Zone 4 Interior Zone 17.27 0.74 -1.10 31.8 psf Zone 5 End Zone 17.27 0.74 -1.10 31.8 psf Case B Zone 4 Interior Zone 17.27 0.74 -0.83 27.2 psf Zone 5 End Zone 17.27 0.74 -0.94 291 psf Roofs:trib.Area=10 sq.ft. qh GCp GCpI P Zone 1 Interior Zone 15.33 -1.00 0.18 -18.1 psf Zone 2 End Zone 15.33 -1.80 0.18 -30.4 psf Zone 3 Corner Zone 15.33 -1.80 0.18 -30.4 psf Zone 1,2,and 3 15.33 0.30 -0.18 7.4 psf Roofs:trib.Area=36 sq.ft. qh GCp GCpI P Zone 1 Interior Zone 15.33 -0.94 0.18 -17.2 psf Zone 2 End Zone 15.33 -1.41 0.18 -24.4 psf Zone 3 Corner Zone 15.33 -1.41 0.18 -24.4 psf Zone 1,2,and 3 15.33 0.24 -0.18 6.5 psf Roofs:trib.Area=100 sq.ft. qh GCp GCpI P Zone 1 Interior Zone 15.33 -0.90 0,18 -16.6 psf Zone 2 End Zone 15.33 -1.10 0.18 -19.6 psf Zone 3 Corner Zone 15.33 -1.10 0.18 -19.6 psf Zone 1,2,and 3 15.33 0.20 -0.18 5.8 psf Overhangs:trib.Area=10 sq.ft. qh GCpn Pp Zone 1 Interior Zone 15.33 -1.70 -26.1 psf Zone 2 End Zone 15.33 -1.70 -26.1 lost Zone 3 Corner Zone 15.33 -2.80 -42.9 psf Overhangs:trib.Area=50 sq.ft. qh GCpn Pp Zone 1 Interior Zone 15.33 -1,63 -25.0 psf Zone 2 End Zone 15.33 -1.63 -25.0 psf Zone 3 Corner Zone 15.33 -1.40 -21.5 psf a,end zone width=Min.of 10%L and.4h but not<4%L or 3'= 8.1 feet(Fig.6-11) Notes: 1.The gust factor of 0.85 is based on a building with a natural frequency of>1 Hz. For other buildings,the gust factor must be calculated. 2. If a parapet equal to 3 ft or higher is provided around the perimeter of a roof with a slope of s 7°,the roof comer zones may be treated as end zones. (Fig.6-118,Footnote 5) WALLACE DESIGN PROGRAM_ _ Revised:10/03/2013 Author:Katie Faulkner Date 4110/2015 Sheet of Job Northampton,MA Subject WIND ANALYSIS:ANALYTICAL-ALL HEIGHTS METHOD _ ASCE 7-05,Section 6.5 1.Input Md�efd (QeW Design Parameters Pfg5so, Pressu d Basic Wind Speed,V= 90 mph(Section 6.5.4,Fig.6-1) e- _- - Exposure Category(B,C,or D)= C.(Section 6.5.6.3) Roof m , o',« Building Category(I,II,III,or IV)_ 11,(Section 6.5.5,Table 1-1) o m= Wall 2 y2 Eave Height,He= 17.33 feet 2 Max Building Height or Ridge Height above ground level,Hr= 21.00 feet Height Parapet Height above ground level,Hp= i.3,0.00 feet Building Width Perpendicular to Wind.8= ",515.00 feet(max bldg dim) W Building Width Parallel to Wind,L= 202.00 feet Enclosed, or Partially Enclosed Building= .E'.E,P(Section 6.5.9) REFER TO FIGURE 6-6 Gabled,Multispan,Monosloped,or Sawtooth Roof= G:(G,MG,MS,or S) Angle of Plane of Roof From Horizontal,6= 1.19 degrees Tributary Area for Wall Components,1= '100,square feet Tributary Area for Wall Components,2= 200.square feet Tributary Area for Wall Components,3= 40.0,square feet Tributary Area for Parapet Components,1= 50 square feet z Tributary Area for Parapet Components,2= 100 square feet Tributary Area for Roof Components,1= 10 square feet x(upwind) x Tributary Area for Roof Components,2= �36..square feet -_--al Tributary Area for Roof Components,3= 100 square feet N Tributary Area for Overhangs or Canopies,1= 10 square feet V(z) _ - I Tributary Area for Overhangs or Canopies,2= 50 square feet F Lh N Is building on or near a hill,ridge,or escarpment? IN(Y or N)(Section 6.5.7.1) Height of Hill or Escarpment relative to upwind terrain,H= 10.00 feet(Sect.6.5.7,Fig.6-4) Horiz.Dist.Upwind to Point Where Elevation=H12,Lh= 10.00 feet(Sect.6.5.7,Fig.6-4) --_--- I Horiz.Dist.from Crest to Building Site,x= 10,00 feet(Sect.6.5.7,Fig,6-4) 2D Ridge,2D Escarpment,or Axisymmetrical Hill= E,(R,E,or H) 2-D Ridge or Axisymmetrical Hill Is the building site upwind or downwind of the crest? -- DOWN(up,down) 2.Calculations-Main Wind Force Resisting System REFER TO FIGURE 6-4 Mean roof height,h= 17.33 feet Kz,velocity pressure exposure coefficient at hz=21 It= 0.91 Table 6-3 (use with qz) Kz,velocity pressure exposure coefficient at hh=17.33ft= 0.87 Table 6-3 (use with qh) Kz,velocity pressure exposure coefficient at hp=30ft= 0.98 Table 6-3 (use with qp) Kzt,topographic factor at hz=21 It= 1.00 Fig.6-4 (use with qz) Kzt,topographic factor at hh=17,33ft= 1.00 Fig.64 (use with qh) Kzt,topographic factor at hp=30ft= 1.00 Fig.6-4 (use with qp) Kd,wind directionality factor= 0.85 Table 6-4 I,Importance factor= 1.00 Table 6-1 G,gust factor= 0.85 Section 6.5.8.1 qz,velocity pressure at hz=21 ft= 16.04 psf(Eq.6-15) qh,velocity pressure at hh=17.33ft= 15.33 psf(Eq.6-15) qp,velocity pressure at hp=30ft= 17.27 psf(Eq.6-15) Walls: P=q(GCpf-GCpi) Eqn.6.17 qz GCp GCpI P Windward pressure 16.04 0.68 10.9 psf qh GCp GCpI P Leeward Pressure 15.33 -0.43 -6.5 psf Sidewall pressure 15.33 -0.60 0.18 -11.9 psf Internal Pressure 15.33 0.18 2.8 psf Windward+Leeward Pressure 10.91 psf+6.52 psf= 17.4 psf Parapets: Pp=gp(GCpn) Eqn.6-20 qp GCp Pp Windward parapet pressure 17.27 1.5 25.9 psf Leeward parapet pressure 17.27 -1.0 -17.3 psf Windward+Leeward Pressure 17.27 2.50 43.2 psf Roof Normal to Ridge(fiz10 degrees) qh GCp GCpI P Windward Pressure case i 15.33 -0.60 0.18 -11.9 psf case ii 15.33 -0.15 0.18 -5.1 psf Leeward Pressure 15.33 -0.26 0.18 -6.7 psf Roof All Other Conditions qh GCp GCpi - P For 0 to h/2=0 It to 8.67 ft 15.33 -0.77 0.18 -14.5 psf K/2 to h=8.67 ft to 17.33 It 15.33 -0.77 0.18 -14.5 psf h to 2h=17.33 It to 34.66 It 15.33 -0.43 0.18 -9.3 psf >21h=>34.66 It 15.33 -0.26 0.18 -6.7 psf Roof Overhangs Section 6.5.11.4 qh GCp GCPI P Maximum pressures 15.33 -0.77 0.68 -22.2 psf wallace CODE CHECK DA-1 E: 4/10/15 TO. City of Northampton Building Department 212 Main St., Puchalski Municipal Bldg. Northampton, MA 01060 PHONE: 413.587.1240 FAX: 413.587.1272 AT TN: Chuck Miller,Asst. Bldq Commissioner EMAIL: cmiller gnorthamptonma.gov PROJECT:# 1510132 Walmart Remodel(Store#2901)--Northampton, Massachusetts BY: PHONE x VISIT OTHER TIME: 2:45pm CST ITEM DESCRIPTION RESPONSE 1-GOVERNING CODE A. Building Code: 2009 IBC--International Building Code B. Local Amendments: 8th Ed. Massachusetts State Building Code C Structural Observations Required? D. Special Inspections Final Report Required for Certificate of Occuoancy? 2-ROOF LIVE LOAD A. Minimum Roof Live Load: 20 psf 1 SNOW LOAD A. Ground Snow Load, Pg: 40 psf B. Can ground snow load be reduced per code: Yes 4.WIND LOAD A. Design Wind Speed: 90 mph B. Occupancy Category II 5. SEISMIC LOAD A. Mapped Spectral Response Acceleration. Ss: 22.0% (short period,0.2s) B. Mapped Spectral Response Acceleration, S1: 6.6% (long period, 1.0s) , 6. FROST DLPIH A. Minimum Bearing Depth: 48 in. REMARKS:. Please notify the undersigned if the above information is incorrect or incomplete. FROM: Beth Ferris, P.E. Wallace Engineering Structural Consultants,Inc.. CC: 200 East Mathew Brady Street J Tulsa,Oklahoma'74103 918.584.5858,lax 316.584.5689 wwwmallacesc.com wally ce WALMART STORE NO. 2901 NORTHAMPTON, MASSACHUSETTS PROJECT NO. 1510132 STRUCTURAL CALCULATIONS j�OF Mgs390 THOMAS W. yG WALLACE 0 0 STRUCTURAL y No 34690 SSIONAL THOMAS W. WALLACE, P.E. ENGINEER OF RECORD Wallace Engineering Structural Consultants,Inc. 200 East Mathew Brady Street Tulsa,Oklahoma 74103 918.584.5858,800.364.5858 www.wallacesc.com Section 1613.5.6 — Determination of seismic design category TABLE 1613.5.6(1) SEISMIC DESIGN CATEGORY BASED ON SNORT-PERIOD RESPONSE ACCELERATION OCCUPANCY CATEGORY VALUE OF SDI I or II III IV SDI < 0.167g A A A 0.1678 5 SDI < 0.33g B B C 0.33g <_ SDI < 0.50g C C D 0.50g <_ SDI D D D For Occupancy Category = I and Sps = 0.239 g, Seismic Design Category = B TABLE 1613.5.6(2) SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION OCCUPANCY CATEGORY VALUE OF SDI I or II III IV SDI < Q.067g A A A 0.0679 :5 Sol < 0.133g B B C 0.133g <_ SDI < 0.20g C C D 0.20g <_ SDI D D D For Occupancy Category = I and Sp, = 0.106 g, Seismic Design Category = B Note: When Sl is greater than or equal to 0.758, the Seismic Design Category is E for buildings in Occupancy Categories I, II, and III, and F for those in Occupancy Category IV, irrespective of the above. Seisrnic Design Category = "the more severe design category in accordance with Table 1613.5.6(1) or 1613.5.6(2)" = B Note: See Section 1613.5.6.1 for alternative approaches to calculating Seismic Design Category. References 1. Figure 1613.5(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2006- Figure 1613_5(01).pdf 2. Figure 1613.5(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2006- Figu re 1613_5(02).pdf THIS ENDORSEMENT CHANGES THE POLICY. PLEASE READ IT CAREFULLY. NEW YORK CONTRACTORS' COMMERCIAL GENERAL LIABILITY BROADENED ENDORSEMENT This endorsement modifies insurance provided under the following: COMMERCIAL GENERAL LIABILITY COVERAGE PART A Endorsement -Table of Contents: Coverage: Begins on Page: 1. Employee Benefit Liability Coverage.................................................... . ...........................................3 2. Unintentional Failure to Disclose Hazards.........................................................................................8 3. Damage to Premises Rented to You...................................................... ....................................1.....8 4. Supplementary Payments................................................................ .................................................9 5. Medical Payments......................................... .. ........ .....................................................9 . ................ . 6. Voluntary Property Damage (Coverage a.) and Care, Custody or Control Liability Coverage (Coverage b.)..................... ..................................................................................9 7. 180 Day Coverage for Newly Formed or Acquired Organizations...................................................10 8. Waiver of Subrogation.....................................................................................................................10 9. Automatic Additional Insured- Specified Relationships: ...... .............. ................ ....... . .. .. ..........10 • Managers or Lessors of Premises; • Lessor of Leased Equipment; • Vendors; • State or Political Subdivisions-Permits Relating to Premises; • State or Political Subdivisions- Permits; and • Contractors' Operations 10. Broadened Contractual Liability-Work Within 50' of Railroad Property..........................................14 11. Property Damage to Borrowed Equipment................................. ...................................14 .................. 12. Employees as Insureds-Specified Health Care Services. .............................................................14 • Nurses; x Emergency Medical Technicians; and • Paramedics 13. Broadened Notice of Occurrence......................... .................................................................15 B. Limits of Insurance: The Commercial General Liability Limits of Insurance apply to the insurance provided by this endorsement, except as provided below: 1. Employee Benefit Liability Coverage Each Employee Limit: $ 1,000,000 Aggregate Limit: $ 3,000,000 Deductible: $ 1,000 3. Damage to Premises Rented to You The lesser of: a. The Each Occurrence Limit shown in the Declarations; or b. $500,000 unless otherwise stated $ 4. Supplementary Payments a. Bail bonds: $ 1,000 b. Loss of earnings: $ 350 Includes copyrighted material of Insurance GA 233 NY 02 07 Services Office, Inc.,with its permission. Page 1 of 15 ACC) CERTIFICATE OF LIABILITY INSURANCE DATE(MM/DD/YYYY) 1111 1 8/7/2015 THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER,AND THE CERTIFICATE HOLDER. IMPORTANT: If the certificate holder is an ADDITIONAL INSURED,the policy(ies)must be endorsed. If SUBROGATION IS WAIVED,subject to the terms and conditions of the policy,certain policies may require an endorsement. A statement on this certificate does not confer rights to the certificate holder in lieu of such endorsements . PRODUCER CONTACT NAME: ..-...___... Reagan Insurance EA/�No x[;315-673 20 4 Talc No 15 673-1121_ 8 E Main Street MAIL P O Box 191 ADDRESS: Marcellus NY 13108 INSURER(S)AFFORDING COVERAGE NAIC# INSURERA:CInclnnatl Insurance Company ,10677 INSURED RLSPE INSURER B:WeSCD ,25011 R L Spencer Inc., INSURERC;AGCS Marine Insurance Co 4500 Pewter Lane, Bldg#7 INSURER DACE American Ins Co(WHG) 22667 Manlius NY 13104 INSURER E: INSURER F: COVERAGES CERTIFICATE NUMBER:1972869887 REVISION NUMBER: THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITIONS OF SUCH POLICIES.LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS. INSR ADDLISUBRi - - POLICY EFF POLICY EXP LTR TYPE OF INSURANCE INSR WVD POLICY NUMBER MM/DD/YYYY MMIDDfYYYY LIMITS A GENERAL LIABILITY Y Y CAP5182866 4/1/2015 4/112016 EACH OCCURRENCE $1,000,000 DAMAGE TO RENTED - X COMMERCIAL GENERAL LIABILITY PREMISES(Ea occurrence) $500,000 CLAIMS-MADE X OCCUR M ED EXP(Any one person) $10,000 X Primary& PERSONAL&ADV INJURY $1,000,000 X Non-contributory GENERAL AGGREGATE $2,000,000 i GEN'L AGGREGATE LIMIT APPLIES PER: PRODUCTS-COMP/OPAGG $2,000,000 POLICY X PRO- '..X LOC $ A AUTOMOBILE LIABILITY Y Y EBA0175878 4/1/2015 4/1/2016 (Ea accident) $1,000,000 X ANY AUTO BODILY INJURY(Per person) $ ALL OWNED SCHEDULED AUTOS AUTOS BODILY INJURY(Per accident)' $ X HIRED AUTOS X NON-OWNED PROPERTY DAMAGE $ AUTOS (Per accidert) (Hired Phys Dmg $$40,000 D X UMBRELLA LIAR X OCCUR Y Y N10881304 4/1/2015 4/1/2016 EACH OCCURRENCE $8,000,000 EXCESS LIAB CLAIMS-MADE ��i AGGREGATE $8,000,000 DED RETENTION$ g WORKERS COMPENSATION Y '�WVVC3086429 4/1/2015 I,4/1/2016 X TORY LA ITS oTH- AND EMPLOYERS'LIABILITY �/N ANY PROPRIETOR/PARTNER/EXECUTIVE I E.L.EACH ACCIDENT $1,000,000 OFFICER/MEMBER EXCLUDED? ❑ NIA - - (Mandatory in NH) E.L.DISEASE-EA EMPLOYEE $1,000,000 If yes,describe under - - DESCRIPTION OF OPERATIONS below E.L.DISEASE-POLICY LIMIT I $1,000,000 A Leased&Rented Equip CAP5182866 4/1/2015 4/1/2016 '$75,000 $500 Ded. Builders Risk Y Y MZ193057407 3/6/2015 3/6/2016 $1,000,000 $1,000 Ded DESCRIPTION OF OPERATIONS/LOCATIONS I VEHICLES (Attach ACORD 101,Additional Remarks Schedule,if more space is required) Additional Insured and Waiver of Subrogation are applicable only if required by contract/General Liability policy includes completed operations coverage/Umbrella policy is on a primary&non-contributory basis&follows form/Auto Hired Physical Damage Deds$100 Comp/$500 Collision Project:Wal-Mart Store#2901-207, Northampton, MA Wal-Mart Store Inc., its subsidiaires&affiliates, GBR North King Limited Liability Company, Northampton Holdings L.P, WLR Northampton A, LLC, Gibraltar Management Co., Inc. and all other parties as required by contract are listed as additional insured on the General Liability See Attached... CERTIFICATE HOLDER CANCELLATION SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN Wal-Mart Store Inc. ACCORDANCE WITH THE POLICY PROVISIONS. its subsidiaries&affiliates 2001 S.E. 10th St. AUTHORIZED REPRESENTATIVE Bentonville AR 72716 ©1988-2010 ACORD CORPORATION. All rights reserved. ACORD 25(2010/05) The ACORD name and logo are registered marks of ACORD Initial Construction Control Document W To be submitted with the building permit application by a d Registered Design Professional for work per the 8th edition of the Massachusetts State Building Code, 780 CMR, Section 107 Project Title: Walmart Store#2901 Date: 04/21/15 Property Address: 180 North King Street,Northampton, MA 01060 Project: Check(x)one or both as applicable: New construction X Existing Construction Project description: General Remodel of store,paint finish clean exterior and interior,repair/replace misc. doors, floor tile, refurbish misc. spaces. Replace drinking fountains and restroorn sinks like for like, replace and add reach-in refrigeration cases to sales floor with associated equipment on roof. I Jacob A Hamilton MA Registration Number: 51348 Expiration date: 06/30/16 ,am a registered design professional, and I have prepared or directly supervised the preparation of all design plans, computations and specifications concerningi: Architectural Structural Mechanical Fire Protection X Electrical Other: for the above named project and that to the best of my knowledge, information, and belief such plans, computations and specifications meet the applicable provisions of the Massachusetts State Building Code,(780 CMR), and accepted engineering practices for the proposed project. I understand and agree that I (or my designee) shall perform the necessary professional services and be present on the construction site on a regular and periodic basis to: 1. Review, for conformance to this code and the design concept, shop drawings, samples and other submittals by the contractor in accordance with the requirements of the construction documents. 2. Perform the duties for registered design professionals in 780 CMR Chapter 17, as applicable. 3. Be present at intervals appropriate to the stage of construction to become generally familiar with the progress and quality of the work and to determine if the work is being performed in a manner consistent with the approved construction documents and this code. Nothing in this document relieves the contractor of its responsibility regarding the provisions of 780 CMR 107. When required by the building official, I shall submit field/progress reports(see item 3.)together with pertinent comments, in a form acceptable to the building official. Upon completion of the work, I shall submit to the building official a `Final Construction Co c a t Tent'. ��a !✓ H�'` q 5 � 1A�7�09 A. t Enter in the space to the right a"wet"or HA 11LTO�+ Zi electronic signature and seal 0 ELECTRICAL No. 51348 Phone number: (785) 865-2332 Email:jhamilton@gpwassociates.com A,I Building Official Use Only Building Official Name: Permit No.: Date: Note 1.Indicate with an `x'project design plans,computations and specifications that you prepared or directly supervised.If`other' is chosen, provide a description. Version 06 11 2013 Initial Construction Control Document To be submitted with the building permit application by a R d Registered Design Professional for work per the 8`' edition of the r Massachusetts State Building Code, 780 CMR, Section 107 Project Title: Walmart Store#2901 Date: 04/21/15 Property Address: 180 North King Street,Northampton, MA 01060 Project: Check(x)one or both as applicable: New construction X Existing Construction Project description: General Remodel of store, paint finish clean exterior and interior, repair/replace misc. doors, floor tile,refurbish misc. spaces. Replace drinking fountains and restroom sinks like for like,replace and add reach-in refrigeration cases to sales floor with associated equipment on roof. I Paul T. McManus,Architect MA Registration Number: 32031 Expiration date: 8/31/15 , am a registered design professional, and I have prepared or directly supervised the preparation of all design plans, computations and specifications concerning': X Architectural Structural Mechanical Fire Protection Electrical Other: for the above named project and that to the best of my knowledge, information,and belief such plans,computations and specifications meet the applicable provisions of the Massachusetts State Building Code, (780 CMR),and accepted engineering practices for the proposed project. I understand and agree that I(or my designee) shall perform the necessary professional services and be present on the construction site on a regular and periodic basis to: 1. Review, for conformance to this code and the design concept, shop drawings, samples and other submittals by the contractor in accordance with the requirements of the construction documents. 2. Perform the duties for registered design professionals in 780 CMR Chapter 17,as applicable. 3. Be present at intervals appropriate to the stage of construction to become generally familiar with the progress and quality of the work and to determine if the work is being performed in a manner consistent with the approved construction documents and this code. Nothing in this document relieves the contractor of its responsibility regarding the provisions of 780 CMR 107. When required by the building official, I shall submit field/progress reports(see item 3.)together with pertinent comments, in a form acceptable to the building official. Upon completion of the work, I shall submit to the building official a `Final Construction Control Document'. �FFD A Enter in the space to the right a"wet"or electronic signature and seal: J o -2 { :. Phone number: 918-587-8600 Email: paulm @sgadesigngroup.com ? I-u.:a i T i Building Official Use Only Building Official Name: Permit No.: Date: Note 1.Indicate with an`x'project design plans,computations and specifications that you prepared or directly supervised.If`other'is chosen, provide a description. Version 06 11 2013 Initial Construction Control Document G To be submitted with the building permit application by a Registered Design Professional for work per the 8th edition of the v Massachusetts State Building Code, 780 CMR, Section 107 Project Title: Walmart Store 92901 Date: 04/21/15 Property Address: 180 North King Street, Northampton, MA 01060 Project: Check(x)one or both as applicable: New construction X Existing Construction Project description: General Remodel of store, paint finish clean exterior and interior, repair/replace misc. doors, floor tile, refurbish misc. spaces. Replace drinking fountains and restroom sinks like for like, replace and add reach-in refrigeration cases to sales floor with associated equipment on roof, I Joanne K. Hoban MA Registration Number: 51430 Expiration date: 06/30/16 , am a registered design professional, and I have prepared or directly supervised the preparation of all design plans,computations and specifications concerning': Architectural Structural X Mechanical X Fire Protection Electrical Other: for the above named project and that to the best of my knowledge, information,and belief such plans,computations and specifications meet the applicable provisions of the Massachusetts State Building Code, (780 CMR),and accepted engineering practices for the proposed project. I understand and agree that I (or my designee)shal l perform the necessary professional services and be present on the construction site on a regular and periodic basis to: I. Review, for conformance to this code and the design concept, shop drawings, samples and other submittals by the contractor in accordance with the requirements of the construction documents. 2. Perform the duties for registered design professionals in 780 CMR Chapter 17,as applicable. 3. Be present at intervals appropriate to the stage of construction to become generally familiar with the progress and quality of the work and to determine if the work is being performed in a manner consistent with the approved construction documents and this code. Nothing in this document relieves the contractor of its responsibility regarding the provisions of 780 CMR 107. When required by the building official, I shall submit field/progress reports(see item 3.)together with pertinent comments, in a form acceptable to the building official. Upon completion of the work, I shall submit to the building official a `Final Construction Control Document'. 4�N OF MA Enter in the space to the right a"wet"or electronic signature and seal: ° u) HOBAN Phone number: (785) 865- 332 Email:pjhobana?gpwassocia `t tes,c '►' MECHANICAL wl No.51430 A9po��G/ST E4 �.�Q C� 'S ECG l t Building Official Use Only Building Official Name: Permit No.: Date: Note 1. Indicate with an `x'project design plans,computations and specifications that you prepared or directly supervised. If`other' is chosen, provide a description. Version 06 11 2013 Versionl.7 Commercial Building Permit May 15,2000 SECTION 10-STRUCTURAL PEER REVIEW(780 CMR 110.11) Independent Structural Engineering Structural Peer Review Required Yes O No Q SECTION 11' OWNER AUTHORIZATION-TO BE COMPLETED WHEN OWNERS AGENT OR CONTRACTOR APPLIES FOR BUILDING PERMIT 1 L as Owner of the subject property hereby authorize to act on my behalf, in all matters relative to work authorized by this building permit application. Signature of Owner Date 1 as Owner/Authorized Agent hereby declare that the statements and information on the foregoing application are true and accurate,to the best of my knowledge and belief. Signed under the pains and penalties of perjury. Print Name Signature of Owner/Agent Date SECTION 12-CONSTRUCTION SERVICES 10.1 Licensed Construction Supervisor: Not Applicable ❑ Name of License Holder: LAX--- . CS 1 1© 1'Z License Number - ® or Address Expiration Date 31S".Lb?- TI Signatu Telephone SECTION 1 RKERS'COMPENSATION INSURANCE AFFIDAVIT(M.G L.c.162,§25C(6)) Workers Compensation Insurance affidavit must be completed and submitted with this application. Failure to provide this affidavit will result in the denial of the issuance of the building permit. Signed Affidavit Attached Yes Q No 0 Versionl.7 Commercial Building Permit May 15,2000 SECTION 9-PROFESSIONAL DESIGN AND CONSTRUCTION SERVICES-FOR BUILDINGS AND STRUCTURES SUBJECT TO CONSTRUCTION CONTROL PURSUANT TO 780 CMR 116(CONTAINING MORE THAN 35,000 C.F.OF ENCLOSED SPACE) 9.1 Registered Architect: Paul T. McManus Not Applicable ❑ 32031 Name(Registrant): Paul T. McManus Registration Number 08/31/2015 Address ! Expiration Date `91811 587-8600 Signature Telephone 9.2 Registered Professional Engineer(s): Name Area of Responsibility Address Registration Number Signature Telephone Expiration Date Name Area of Responsibility Address Registration Number Signature Telephone Expiration Date Name Area of Responsibility Address Registration Number Signature Telephone Expiration Date Name Area of Responsibility Address Registration Number Signature Telephone Expiration Date 9.3 General Contractor TBD Q{ tVt— Not Applicable ❑ Company Name: Wev"I u,j Responsible In Charge of Construction /3 v Address 36.' b2•-71. Signa re Telephone Versionl.7 Commercial Building Permit May 15,2000 MCI Existing Proposed Required by Zoning This column to be filled in by Building Department Lot Size ETR Frontage ETR Setbacks Front ETR Side L;ETR R;ETR L;= R:= D D Rear ETR Building Height ETR C� Bldg.Square Footage ETR % Open Space Footage F- (Lot area minus bldg&paved ETR parking) #of Parking Spaces ETR 0 Fill: ETR volume&Location A. Has a Special Permit/Variance/Finding ever been issued for/on the site? NO O DONT KNOW O YES Q IF YES, date issued: IF YES: Was the permit recorded at the Registry of Deeds? NO O DONT KNOW O YES O IF YES: enter Book Page and/or Document# B. Does the site contain a brook, body of water or wetlands? NO O DONT KNOW O YES O IF YES, has a permit been or need to be obtained from the Conservation Commission? Needs to be obtained O Obtained O , Date Issued: C. Do any signs exist on the property? YES O NO O IF YES, describe size, type and location: Size ETR,Monument sign,North King Street D. Are there any proposed changes to or additions of signs intended for the property? YES O NO 0 IF YES, describe size, type and location: E. Will the construction activity disturb(clearing,grading,excavation,or filling)over 1 acre or is it part of a common plan that will disturb over 1 acre? YES O NO O IF YES,then a Northampton Storm Water Management Permit from the DPW is required. Versionl.7 Commercial Building Permit May 15,2000 SECTION 4-CONSTRUCTION SERVICES FOR PROJECTS LESS THAN 35,000 CUBIC FEET OF ENCLOSED SPACE Interior Alterations ❑ Existing Wall Signs ❑ Demolition❑ Repairs❑ Additions ❑ Accessory Building❑ Exterior Alteration ❑ Existing Ground Sign❑ New Signs❑ Roofing❑ Change of Use❑ Other❑ Brief Description Enter a brief description here. Of Proposed Work. SECTION 6-USE GROUP AND CONSTRUCTION TYPE USE GROUP(Check as applicable) CONSTRUCTION TYPE A Assembly ❑ A-1 ❑ A-2 ❑ A-3 ❑ 1A ❑ A-4 ❑ A-5 ❑ 1B ❑ B Business ❑ 2A ❑ E Educational ❑ 2B I ❑ F Factory ❑ F-1 ❑ F-2 ❑ 2C ❑ H High Hazard ❑ 3A ❑ Institutional ❑ 1-1 ❑ 1-2 ❑ 1-3 ❑ 3B ❑ M Mercantile ❑ 4 ❑ R Residential ❑ R-1 ❑ R-2 ❑ R-3 ❑ 5A ❑ S Storage ❑ S-1 ❑ S-2 ❑ 5B 0 U Utility ❑ Specify: M Mixed Use ❑ Specify: S Special Use ❑ Specify: COMPLETE THIS SECTION IF EXISTING BUILDING UNDERGOING RENOVATIONS,ADDITIONS AND/OR CHANGE;IN USE Existing Use Group: im Proposed Use Group: im Existing Hazard Index 780 CMR 34): 3 -- 1 Proposed Hazard Index 780 CMR 34): 1— SECTION 6 BUILDING HEIGHT AND AREA BUILDING AREA EXISTING PROPOSED NEW CONSTRUCTION ¢fi fi Floor Area per Floor(sf) �r 1s` 96,3521 nd 2nd 2 rd 3rd 3 xW l 4t' 4 t S � v Total Area(so 96,3521 Total Proposed New Constructions Total Height(ft) 1 d} � 1 rq,�>� : Total Height ft ° 7.Water Supply(M.G.L.c.40,§54) 7.1 Flood Zone Information: 7.3 Sewage Disposal System: Public ❑i Private ❑ Zone E� Outside Flood Zone❑ Municipal ❑ On site disposal system[–] AE Version 1.7 Commercial Buildin Permit Ma 15,2000 D CU Northampton g Department APR Main Street oom 100 Electric.Piun°, pton, MA 01060 rv�„�,�. 240 Fax 413-587-1272 APPLICATION TO CONSTRUCT,REPAIR,RENOVATE,CHANGE THE USE OR OCCUPANCY OF,OR DEMOLISH ANY BUILDING OTHER THAN A ONE OR TWO FAMILY DWELLING SECTION 1 -SITE INFORMATION "Th ctlo c d'b � 1.1 Property Address: tn ayef� ,.0 d 180 North King Street Northampton,MA 01060 04 el 11 tri ale $ t r 0�!,Cl3�Qi�ttiet SECTION 2-PROPERTY OWNERSHIP/AUTHORIZED AGENT 2.1 Owner of Record: Name(Print) Current Mailing Address: Signature Telephone 2.2 Authorized Acien t: Name(Print) q _�! , 0 f Current Mailing dress: / ����Z (U U l/ ` Signature Telephone SECTION 3-ESTIMATED CONSTRUCTION COSTS" Item Estimated Cost(Dollars)to be Official Use Only completed by ermit applicant 1. Building $710,000.00 (a)Building Permit Fee 2. Electrical (b)Estimated Total Cost of Construction from 6 3. Plumbing Building Permit Fee 4. Mechanical(HVAC) 5. Fire Protection 6. Total=(1 +2+3+4+5) Check Number This Section For Official Use Onl` Building Permit Number Date Issued Signature: Building Commissioner/Inspector of Buildings Date Versionl.7 Commercial Buildin Permit Ma 15,2000 cwt City of Northampton Building Department 212 Main Street Room 100 Northampton, MA 01060 phone 413-587-1240 Fax 413-587-1272 APPLICATION TO CONSTRUCT,REPAIR,RENOVATE,CHANGE THE USE OR OCCUPANCY OF,OR DEMOLISH ANY BUILDING OTHER THAN A ONE OR TWO FAMILY DWELLING SECTION 1 -SITE INFORMATION 1.1 Property Address: This secdon,to be completed by office 1 180 North King Street f Map Lot Unit ,Northampton,MA 01060 Zone Overlay District bin St.District CB District SECTION 2 PROPERTY OWNERSHIPIAUTHORIZED AGENT 2.1 Owner of Record: Name(Print) Current Mailing Address: Signature Telephone 2.2 Authorized Aa4riR Name Print Current Maili A res :������� ( ) Signature Telephone t-{--V. i— Wo � SECTION 3-ESTIMATED CONSTRUCTION COSTS Item Estimated Cost(Dollars)to be Official Use Only completed by rmit applicant 1. Buildin g (a)Building Permit Fee 10000.00 z 2. Electrical �rvu� (b)Estimated Total Cost of,: _ Constriction from°.B 3. Plumbing .T�.� w—� Building Permit Fee 4. Mechanical(HVAC) 5. Fire Protection 6. Total=(1 +2+3+4+5) Check Number This Section`For Official Use Only Building Permit Number Date Issued Signature: Building Commissioner/Inspector of Buildings Date File#BP-2015-1024 APPLICANT/CONTACT PERSON NORTHAMPTON HOLDINGS LP C/O GIBRALTAR MANAGEMENT CO ADDRESS/PHONE 150 WHITE PLAINS RD TARRYTOWN10591 PROPERTY LOCATION 180 NORTH KING ST- WALMART MAP 18 PARCEL 013 001 ZONE THIS SECTION FOR OFFICIAL USE ONLY: PERMIT APPLICATION CHECKLIST ENCLOSED REQUIRED DATE ZONING FORM FILLED OUT Fee Paid !p F41 444 Building Permit Filled out Fee Paid Typeof Construction: RENOVATE INTERIOR New Construction Non Structural interior renovations Addition to Existing Accessory Structure - Building-Plans Included: Owner/Statement or License ; 3 sets of Plans/Plot Plan THE FOLLOWING ACTION HAS BEEN TAKEN ON THIS APPLICATION BASED ON INFQRMATION PRESENTED: I Approved Additional permits required(see below) PLANNING BOARD PERMIT REQUIRED UNDER:§ Intermediate Project: Site Plan AND/OR Special Permit With Site Plan Major Project: Site Plan AND/OR Special Permit With Site Plan ZONING BOARD PERMIT REQUIRED UNDER: § Finding Special Permit Variance* Received& Recorded at Registry of Deeds Proof Enclosed Other Permits Required: Curb Cut from DPW Water Availability Sewer Availability Septic Approval Board of Health Well Water Potability Board of Health Permit from Conservation Commission Permit from CB Architecture Committee Permit from Elm Street Commission Permit DPW Storm Water Management Demolition Delay 8 /L / S Signature of Building Official Date Note: Issuance of a Zoning permit does not relieve a applicant's burden to comply with all zoning requirements and obtain all required permits from Board of Health,Conservation Commission, Department of public works and other applicable permit granting authorities. * Variances are granted only to those applicants who meet the strict standards of MGL 40A. Contact Office of Planning&Development for more information. 180 NORTH KING ST-WALMART BP-2015-1024 GIS#: COMMONWEALTH OF MASSACHUSETTS Map:Block: 18-013 CITY OF NORTHAMPTON Lot: -001 PERSONS CONTRACTING WITH UNREGISTERED CONTRACTORS Permit: Building DO NOT HAVE ACCESS TO THE GUARANTY FUND (MGL c.142A) Category: renovation BUILDING PERMIT Permit# BP-2015-1024 Project# JS-2015-001949 Est. Cost: $710000.00 Fee: $4260.00 PERMISSION IS HEREBY GRANTED TO: Const. Class: Contractor: License: Use Group: R L SPENCER INC 76938 Lot Size(sq. ft.): 452152.80 Owner: NORTHAMPTON HOLDINGS LP C/O GIBRALTAR MANAGEMENT CO Zoning: Applicant: NORTHAMPTON HOLDINGS LP C/O GIBRALTAR MANAGEMENT CO AT. 180 NORTH KING ST - WALMART Applicant Address: Phone: Insurance: 150 WHITE PLAINS RD TARRYTOWN NY1 0591 ISSUED ON.8 11112015 0:00:00 TO PERFORM THE FOLLOWING WORK:RENOVATE INTERIOR POST THIS CARD SO IT IS VISIBLE FROM THE STREET Inspector of Plumbing Inspector of Wiring D.P.W. Building Inspector Underground: Service: Meter: Footings: Rough: Rough: House# Foundation: Driveway Final: Final: Final: Rough Frame: Gas: Fire Department Fireplace/Chimney: Rough: Oil: Insulation: Final: Smoke: Final: THIS PERMIT MAY BE REVOKED BY THE CITY OF NORTHAMPTON UPON VIOLATION OF ANY OF ITS RULES AND REGULATIONS. Certificate of Occupancy Signature: FeeType• Date Paid: Amount: Building 8/11/2015 0:00:00 $4260.00 212 Main Street, Phone(413)587-1240, Fax: (413) 587-1272 Louis Hasbrouck—Building Commissioner