Loading...
18-013 (11) WALLACE DESIGN PROGRAM REVISED 02108107 Page 2 Copyright Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a BLOCKJAMBS 2.Jamb Design Axial Load: Tributary Width= 5.84 feet Lateral Loading: w,lateral load= 113.2 plf V,shear= 1132.0 Ibs W lateral Below Top of Door Section Properties: Pa \ _ Number of reinforced cells,n= 1 D.L+L L./ m beff= 24 inches Ag= 141.0 sq.in. Ig= 2286.5 in.^4 Vbot Hw Vtop Sg= 393.4 in.^3 ._...... r= 4.03 inches Axial Load: P= 7278.788 Ibs fa= 51.6 psi Loading on Jamb h/r= 59.60599 Fa= 307.0 psi(unreinforced) Moment: B eff My,max.below top of door= 63.1 in-kips As= 0.31 sq.in. dy= 8.625 inches (rho)y= 0.0015 a:• k= 0.229 kd= 1.979>ff=1.5 j= 0.931 fb= 351.4 psi<500 B iamb fs= 25347.3 psi>19200 S Combined Stresses(ACI 2.3.3.2.2): (fa+fb)/Fb= 0.8151.00 O.K. Jamb Section Below Top of Door Above Top of Door Section Properties: Number of reinforced cells,n= 1 beff= 60 inches B eff Ag= 249.0 sq.in. Ig= 5074.7 in.^4 Sg= 873.1 in.^3 r= 4.51 inches Axial Load: n P= 5744.9 Ibs fa= 23.1 psi h/r= 53.16 5 99 B o enin /2 R iamb Fa= 320.9 psi(unreinforced) e Moment: S My,max.above top of door= 67.9 in-kips As= 0.31 sq.in. dy= 8.625 inches Jamb Section Above Door (rho)y= 0.0006 k= 0.148 kd= 1.277 5 ff=1.5 j= 0.951 fb= 216.2 psi<500 fs= 26721.2 psi>19200 Combined Stresses(ACI 2.3.3.2.2): (fa+fb)/Fb= 0.48 5 1.00 O.K. Use 8"Wide Jamb with 245 Bars in Each Cell Estimated Cost=$107.81 WALLACE DESIGN PROGRAM REVISED 02108107 Page 1 Copyright 0 Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a BLOCK JAMBS Based on ACI 530-05 W dead,W live 1. Input Loads/Configuration: Opening Width,B opening= 7.67 feet Opening Height,H= 7.33 feet Roof Bearing Elevation,Hw= 20.00 feet S Nominal Wall Thickness,T= 12(6",8",10"or 12") Overall Wall Weight,Ww= 94 psf Lintel and Jamb Weight,WI= 133 psf Is Grout in Wall Solid or Partial? P S or P Lateral Load,W lateral= 19.40 psf Dead Load,W dead= 0.00 plf Live Load,W live= 0.00 plf D II ,I Eccentricity(Dead/Live Loads),e= 4.00 inches Allowables: _ \\ _ Hw Applicable code= ACI-05(UBC,ACI,ACI-99,ACI-05) Level of inspection factor,e= 1.000(0 to 1) C Z- Z T Masonry Comp.Strength,fm= 1500 psi r Steel strength,Fs= 24000 psi C.J. _ Allow 1/3 stress increase? N (Y or N) H 1 Jamb Input: Jamb Width,B jamb(grouted cells)= 8 inches Bars per cell(#-size)= 2 -#5 Wall Reinforcing Spacing,S= 64 inches Distance from Opening to C.J.= 24 inches Continue first bar to roof height? Y(Y or N) Clear distance for jamb reinforcing= 3.00 inches B opening B jamb Reinforcing Diagram WALLACE DESIGN PROGRAM Revised 12/29/2006 Copyright Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a HSS COLUMN AND BASE PLATE DESIGN LRFD Reference (with pinned bases) Per AISC Specification 1.Input dated March 9,2005 13th Edition Column Mark C1 y P Mx My I Column Input: kips in-kips in-kips to Dead Load,D= 5.37 0.00 32.23 Floor Live Load,L= 0.00 0.00 0.00 Roof Live Load,Lr or Rain Lo 0.00 0.00 0.00 Mx Roof Snow Load,S= 0.00 0.00 0.00 x -.d_-- -P�- --------x Wind,W= 0.00 0.00 0.00 Seismic,E= 0.00 0.00 0.00 Multiplier for floor live loads,f1= 0.50(.5 or 1.0) For LRFD Combination: ` Multiplier for snow loads,f2= 0.70(.2 or.7) For LRFD Combination: Are seismic loads input as strength or allowable stress? LRFD(LRFD or ASD) My Design short period spectral acceleration,Sds= 1.00 y KLx,unbraced length= 17.50 feet KLy,unbraced length= 8.33 feet Cmx= 1.00 Section C2 of Cmy= 1.00 AISC 13th ad. Is the column part of a Unbraced(Moment)Frame? N(Y or N) Minimum and maximum for width,b= 3.00 8.00 inches actual dimensions Minimum and maximum for depth,h= 3.00 8.00 inches Minimum wall thickness,t= 0.3125 inches Column Size= leave blank to auto size leave blank to auto-size [.Column uesign Column Properties Fy,yield stress= 46 ksi A,area of cross section of column= 2.94 sq.in. Sx,section modulus with respect to x axis= 2.30 cu.in. Sy,section modulus with respect to y axis= 2.30 cu.in. rx,radius of gyration about x axis= 1.08 in. Load combinations Considered: ry,radius of gyration about y axis= 1.08 in. 1. 1.4D Zx,section modulus with respect to x axis= 2.90 cu.in. 2. 1.2D+1.6L+0.5(Lr or S or R) Zy,section modulus with respect to y axis= 2.90 cu.in. 3. 1.20+1.6(Lr or S or R)+0.8W Ultimate Loads(Controlling Case-1 AD) 4. 1.2D+0.51-+1.6(Lr or S or R) Pu,ultimate factored compression load= 7.52 kips 5. 1.213+0.5L+0.5(Lr or S or R)+1.6W Mux,ultimate factored moment about x axis= 0.00 in.-kips 6. 1 AW+0.5L+0.75+1E Muy,ultimate factored moment about y axis= 45.13 in.-kips Allowable Stresses I,wall thickness= 0_.2910 inches wall slenderness ratio,b/t= 7.31 wall slenderness ratio,h/t= 7.31 For Compression: lambda(p),compression ratio for compact sections= 28.12 compact lambda(r),compression ratio for non-compact sections= 35.15 lambda(c),compression ratio= 35.15 Q,compression factor= 1.00 81x= 1.51 B1 y= 1.08 Fcr,critical compressive stress= 6.64 ksi oc Pn,allowable compressive strength= 17.57 kips For Flexure in x-dir.: lambda(p),flexural ratio for web for compact sections= 60.76 compact lambda(r),flexural ratio for web for non-compact sections= 143.12 For Flexure in y-dir.: ob Mnx,allowable flexural strength= 120.06 in.-kips compact ob Mny,allowable flexural strength= 120.06 in.-kips Interaction Check Equation H1-1a= 0.79 5 1.00-O.K. USE: HSS 3x3x5/16 Re:AISC Manual (144 to 14-6) d=3.00 b=3.00 DESIGN PROGRAM Revised 3107108,Matthew Gebhardt Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a Steel Lintels 3.Column/Base Plate/Footing Loads 'Ignore minor axis moments(due to eccentricity)for Footing calculations. Column Height,h= 8.33 ft Column KL(major axis)= 17.50 ft (K=2.1) Column KL(minor axis)= 8.33 ft (K=1.0) Column/Plate/Footing 1 Axial Load(dead)= 5.37 kips Axial Load(live)= 0.00 kips Shear--lateral= 0.44 kips Moment--lateral(major axis) = 0.0 in-kips =0 ft-kips Moment--dead(minor axis) = 32.2 in-kips =2.69 ft-kips Moment--live(minor axis) = 0.0 in-kips =0 ft-kips Column/Plate/Footing 2 Axial Load(dead)= 5.38 kips Axial Load(live)= 0.00 kips Shear--lateral= 0.44 kips Moment--lateral(major axis) = 0.0 in-kips =0 ft-kips Moment--dead(minor axis) = 32.2 in-kips =2.68 ft-kips Moment--live(minor axis) = 0.0 in-kips =0 ft-kips Column/Plate/Footing 3 Axial Load(dead)= 0.01 kips Axial Load(live)= 0.00 kips Shear--lateral= 0.00 kips Moment--lateral(major axis) = 0.0 in-kips =0 ft-kips Moment--dead(minor axis) = 0.0 in-kips =0 ft-kips Moment--live(minor axis) = 0.0 in-kips =0 ft-kips DESIGN PROGRAM Revised 3107108,Matthew Gebhardt Copyright Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a Steel Lintels 1.Input T� 0.M Spacing(Col.1 to Col.2)= 7 ft J B E Spacing(Col.2 to Col.3)= 0.01 ft Nominal Wall Thickness,= 12 in(6",8",10"or 12") CMU Density(paritally grouted)= 94 psf Pressure CMU Density(fully grouted)= 133 psf 1 Beam Depth= 8 in(8,16,or 24) Beam Deflection Limit(major)= U600 J.B.E. Beam Deflection Limit(minor)= L/360 ---- -7N7-717777V-7,'w--- w Beam to Column Eccentricity= 6 in V i Bolt Diameter= 0.75 in(0.75,0.875,1.0) T.O.M.Elevation= 122.00 ft Pressure Upper J.B.E.Elevation= 120.00 ft 2 i Lower J.B.E.Elevation= 120.00 ft t B.O.S. i B.O.S.Elevation= 107.33 ft II 1 i i i T.O.Pilaster Elevation= 99.33 ft(or T.O.F.if no pilaster) Exterior Wall Lateral Pressure= 19.4 psf i t F.F.EL. j j i~ Interior Wall Lateral Pressure= 19.4 psf Lateral Load Source= W (W or E) wind or seismic L---J Low Diaphragm Lateral Load,w= 0 plf Upper Roof Gravity Load(dead)= 0 plf Upper Roof Gravity Load(live)= 0 plf Lower Roof Gravity Load(dead)= 0 plf Lower Roof Gravity Load(live)= 0 plf Lintel Beam Size= (leave blank for auto size) Door in Opening: N(Y/N) Masonry Jambs or Moment Cols J (J/C) 2.Beam Calculations Vertical load,wy(dead)= 1535.0 plf Vertical load,wy(live)= 0.0 plf Lateral load,wx= 126.5 plf Beam 1 Moment(x-axis)= 9.40 ft-kips Moment(y-axis)= 0.77 ft-kips Reaction(y-dir)= 5.37 kips Reaction(x-dir)= 0.44 kips Ix required= 20.42 in' ly required= 1.01 in' Beam 2 • •• Moment(x-axis)= 0.00 ft-kips Moment(y-axis)= 0.00 ft-kips Reaction(y-dir)= 0.01 kips Reaction(x-dir)= 0.00 kips Ix required= 0.00 in' ly required= 0.00 in' W8x10 with (2)•3/4"DIA.Bolts Allowable Moment(x-axis)= 1.7 ft-kips>9.4 Allowable Moment(y-axis)= 30.8 ft-kips>0.77 I.E.= 15.977 <1.0 Ix= 9.8 in^4 >20.42 (L/287) ly= 7.8 in^4 >1.01 (L/2784) Ox= 0.29 in Allowable Plate Reaction(y-dir)= 46.3 kips >5.4 wallace WALMART STORE NO. 2901 NORTHAMPTON, MA PROJECT NO. 1510132.03 CHANGE DIRECTIVE #3 STRUCTURAL CALCULATIONS J IN OF Mgss o 9 wO� THOMAS O WALL E STRUCTURAL No•34690 STEP�p���L�Q THOMAS W. WALLACE, P.E. ENGINEER OF RECORD Wallace Engineering Structural Consultants,Inc. 200 East Mathew Brady Street Tulsa,Oklahoma 74103 918.584.5558,800.364.5858 rrww.wallacesc.com WALLACE DESIGN PROGRAM REVISED 02108107 Page 2 Copyright Date 9/812015 Sheet No. of Job Northampton,MA Subject 64",door 100a BLOCKJAMBS 2.Jamb Design Axial Load: Tributary Width= 5.84 feet Lateral Loading: w,lateral load= 113.2 plf V,shear= 1132.0 Ibs W lateral Below Top of Door Section Properties: Pa \ Number of reinforced cells,n= 1 D.L+LL J m beff= 24 inches Ag= 141.0 sq.in. Ig= 2286.5 in.^4 Vbot Hw Vtop Sg= 393.4 in.^3 r= 4.03 inches Axial Load: P= 7278.788 Ibs fa= 51.6 psi Loading on Jamb h/r= 59.60 5 99 Fa= 307.0 psi(unreinforced) Moment: B eff My,max.below top of door= 63.1 in-kips As= 0.31 sq.in. dy= 8.625 inches (rho)y= 0.0015 o k= 0.229 ' b kd= 1.979>ff=1.5 1= 0.931 fb= 351.4 psi<500 B iamb fs= 25347.3 psi>19200 S Combined Stresses(ACI 2.3.3.2.2): (fa+fb)/Fb= 0.81 5 1.00 O.K. Jamb Section Below Top of Door Above Top of Door Section Properties: Number of reinforced cells,n= 1 beff= 60 inches B eff __... Ag= 249.0 sq.in. Ig= 5074.7 in.^4 Sg= 873.1 in.^3 r= 4.51 inches p Axial Load: P= 5744.9 Ibs n fa= 23.1 psi h/r= 53.16 5 99 B opening/2 R iamn Fa= 320.9 psi(unreinforced) Moment: S I L My,max.above top of door= 67.9 in-kips As= 0.31 sq.in. dy= 8.625 inches Jamb Section Above Door (rho)y= 0.0006 k= 0.148 kd= 1.277 5 ff=1.5 j= 0.951 fb= 216.2 psi<500 fs= 26721.2 psi>19200 Combined Stresses(ACI 2.3.3.2.2): (fa+fb)/Fb= 0.48 5 1.00 0.K. Use 8"Wide Jamb with 245 Bars in Each Cell Estimated Cost=$107.81 WALLACE DESIGN PROGRAM REVISED 02108107 Page 1 Copyright Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'4",door 100a BLOCK JAMBS Based on ACI 530-05 1. Input W dead,W live Loads/Configuration: Opening Width,B opening= 7.67 feet Opening Height,H= 7.33 feet --------- -------- — -- - - ----- -------- Roof Bearing Elevation,Hw= 20.00 feet S Nominal Wall Thickness,T= 12(6",8",10"or 12") Overall Wall Weight,Ww= 94 psf Lintel and Jamb Weight,WI= 133 psf Is Grout in Wall Solid or Partial? P S or P Lateral Load,W lateral= 19.40 psf Dead Load,W dead= 0.00 plf r-- _ .. ` Live Load,W live= 0.00 plf Eccentricity(Dead/Live Loads),e= 4.00 inches D Allowables: Hw Applicable code= ACI-05(UBC,ACI,ACI-99,ACI-05) C _ Level of inspection factor,e= 1.000(0 to 1) Masonry Comp.Strength,fm= 1500 psi F Steel strength,Fs= 24000 psi - i C.J. --` Allow 1/3 stress increase? N (Y or N) H Jamb Input: Jamb Width,B jamb(grouted cells)= 8 inches Bars per cell(#-size)= 2 -#5 Wall Reinforcing Spacing,S= 64 inches Distance from Opening to C.J.= 24 inches Continue first bar to roof height? Y(Y or N) Clear distance for jamb reinforcing= 3.00 inches B opening B jamb Reinforcing Diagram WALLACE DESIGN PROGRAM Revised 1212912006 Copyright r Date 9/812015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a HISS COLUMN AND BASE PLATE DESIGN(LRFD) Reference (with pinned bases) Per AISC Specification 1.Input dated March 9,2005 13th Edition Column Mark C1 y P Mx My Column Input: kips in-kips in-kips b Dead Load,D= 5.37 0.00 32.23 rT Floor Live Load,L= 0.00 0,00 0.00 Roof Live Load,Lr or Rain Lo 0.00 0.00 0.00 Mx Roof Snow Load,S= 0.00 0.00 0.00 x -_d -- P.*- _- - -x Wind,W= 0.00 0.00 0.00 Seismic,E= 0.00 0.00 0.00 Multiplier for floor live loads,f1= 0.50(.5 or 1.0) For LRFD Combination: Multiplier for snow loads,f2= 0.70(.2 or.7) For LRFD Combination: Are seismic loads input as strength or allowable stress? LRFD(LRFD or ASD) My Design short period spectral acceleration,Sds= 1.00 y KLx,unbraced length= 17.50 feet KLy,unbraced length= 8.33 feet Cmx= 1.00 Section C2 of Cmy= 1.00 AISC 13th ad. Is the column part of a Unbraced(Moment)Frame? N(Y or N) Minimum and maximum for width,b= 3.00 8.00 inches actual dimensions Minimum and maximum for depth,h= 3.00 8.00 Inches Minimum wall thickness,t= 0.3125 inches Column Size= leave blank to auto size leave blank to auto-size 2.uolumn uesign Column Properties Fy,yield stress= 46 ksi A,area of cross section of column= 2.94 sq.in. Sx,section modulus with respect to x axis= 2.30 cu.in. Sy,section modulus with respect to y axis= 2.30 cu.in. rx,radius of gyration about x axis= 1.08 in. Load Combinations Considered: ry,radius of gyration about y axis= 1.08 in. 1. 1.413 Zx,section modulus with respect to x axis= 2.90 cu.in. 2. 1.21)+1.61-+0.5(Lr or S or R) Zy,section modulus with respect to y axis= 2.90 cu.in. 3. 1.20+1.6(Lr or S or R)+0.8W Ultimate Loads(Controlling Case-1 AD) 4. 1.21)+0.51-+1.6(Lr or S or R) Pu,ultimate factored compression load= 7.52 kips 5.1.21)+0.5L+0.5(Lr or S or R)+1.6W Mux,ultimate factored moment about x axis= 0.00 in.-kips 6. 1.4D•+0.5L+0.7S+1E Muy,ultimate factored moment about y axis= 45.13 in:kips Allowable Stresses I,wall thickness= 0.2910 inches wall slenderness ratio,bit= 7.31 wall slenderness ratio,h/t= 7.31 For Compression: lambda(p),compression ratio for compact sections= 28.12 compact lambda(r),compression ratio for non-compact sections= 35.15 lambda(c),compression ratio= 35.15 Q,compression factor= 1.00 B1x= 1.51 Bty= 1.08 Fcr,critical compressive stress= 6.64 ksi ec Pn,allowable compressive strength= 17.57 kips For Flexure in x-dir.: lambda(p),flexural ratio for web for compact sections= 60.76 compact lambda(r),flexural ratio for web for non-compact sections= 143.12 For Flexure in y-dir.: eb Mnx,allowable flexural strength= 120.06 in.-kips compact ob Mny,allowable flexural strength= 120.06 in.-kips Interaction Check Equation H1-1a= 0.79 5 1.00-O.K. USE: HISS 3x3x5/16 Re:AISC Manual (144 to 14-6) d=3.00 b=3.00 DESIGN PROGRAM ` Revised 3107108,Matthew Gebhardt Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a Steel Lintels 3.Column/Base Plate/Footing Loads Ignore minor axis moments(due to eccentricity)for Footing calculations. Column Height,h= 8.33 ft Column KL(major axis)= 17.50 ft (K=2.1) Column KL(minor axis)= 8.33 ft (K=1.0) Column/Plate/Footing 1 Axial Load(dead)= 5.37 kips Axial Load(live)= 0.00 kips Shear--lateral= 0.44 kips Moment--lateral(major axis) = 0.0 in-kips =0 ft-kips Moment--dead(minor axis) = 32.2 in-kips =2.69 ft-kips Moment--live(minor axis) = 0.0 in-kips =0 ft-kips Column/Plate/Footing 2 Axial Load(dead)= 5.38 kips Axial Load(live)= 0.00 kips Shear--lateral= 0.44 kips Moment--lateral(major axis) = 0.0 in-kips =0 ft-kips Moment--dead(minor axis) = 32.2 in-kips =2.68 ft-kips Moment--live(minor axis) = 0.0 in-kips =0 ft-kips Column/Plate/Footing 3 Axial Load(dead)= 0.01 kips Axial Load(live)= 0.00 kips Shear--lateral= 0.00 kips Moment--lateral(major axis) = 0.0 in-kips =0 ft-kips Moment--dead(minor axis) = 0.0 in-kips =0 ft-kips Moment--live(minor axis) = 0.0 in-kips =0 ft-kips DESIGN PROGRAM Revised 3107108,Matthew Gebhardt Copyright Date 9/8/2015 Sheet No. of Job Northampton,MA Subject 6'-4",door 100a Steel Lintels 1.Input T-0-M Spacing(Col.1 to Col.2)= 7 ft J.B.E. Spacing(Col.2 to Col.3)= 0.01 ft Nominal Wall Thickness,= 12 in(6",8",10"or 12") CMU Density(paritally grouted)= 94 psf Pressure CMU Density(fully grouted)= 133 psf 1 Beam Depth= 8 in(8,16,or 24) Beam Deflection Limit(major)= U600 J.B.E. Beam Deflection Limit(minor)= L/360 ---- � T 7 T T 7^if--- w Beam to Column Eccentricity= 6 in -\L V- i Bolt Diameter= 0.75 in(0.75,0.875,1.0) T.O.M.Elevation= 122.00 ft Pressure � i Upper J.B.E.Elevation= 120.00 ft 2 Lower J.B.E.Elevation= 120.00 ft B.O.S. i B.O.S.Elevation= 107.33 ft II t i i T.O.Pilaster Elevation= 99.33 ft(or T.O.F.if no pilaster) 11 ^_i i i Exterior Wall Lateral Pressure= 19.4 psf F.F.EL. 11 ; ! i Interior Wall Lateral Pressure= 19.4 psf L Lateral Load Source= W (W or E) wind or seismic L-- Low Diaphragm Lateral Load,w= 0 plf Upper Roof Gravity Load(dead)= 0 plf Upper Roof Gravity Load(live)= 0 plf Lower Roof Gravity Load(dead)= 0 plf Lower Roof Gravity Load(live)= 0 plf Lintel Beam Size= (leave blank for auto size) Door in Opening: N(Y/N) Masonry Jambs or Moment Cols J (J/C) 2.Beam Calculations Vertical load,wy(dead)= 1535.0 plf Vertical load,wy(live)= 0.0 plf Lateral load,wx= 126.5 pit Beam 1 Moment(x-axis)= 9.40 ft-kips Moment(y-axis)= 0.77 ft-kips Reaction(y-dir)= 5.37 kips Reaction(x-dir)= 0.44 kips Ix required= 20.42 in ly required= 1.01 in Beam 2 �. Moment(x-axis)= 0.00 ft-kips Moment(y-axis)= 0.00 ft-kips Reaction(y-dir)= 0.01 kips Reaction(x-dir)= 0.00 kips Ix required= 0.00 in" ly required= 0.00 in" W8x10 with (2)-3/4"DIA.Bolts Allowable Moment(x-axis)= 1.7 ft-kips>9.4 Allowable Moment(y-axis)= 30.8 ft-kips>0.77 I.E.= 15.977 <1.0 Ix= 9.8 in^4 >20.42 (U287) ly= 7.8 in^4 >1.01 (U2784) Ax= 0.29 in Allowable Plate Reaction(y-dir)= 46.3 kips >5.4 wallace ,7 WALMART STORE NO. 2901 NORTHAMPTON, MA PROJECT NO. 1510132.03 CHANGE DIRECTIVE #3 STRUCTURAL CALCULATIONS Ct $.J-( �A THOMAS W. cyv� WALLACE m STRUCTURAL No 34690 A9�r 9F�IS'�PcO\��c�Q S �G THOMAS W. WALLACE, P.E. ENGINEER OF RECORD Wallace Engineering Structural Consultants,Inc. 200 East Mathew Brady Street Tulsa,Oklahoma 74103 918.584.5858,800.364.5858 """'i o".wa l l a c e s c.co m September 9, 2015 Louis Hasbrouck Building Commissioner City of Northampton 212 Main Street Northampton, MA 01060 RE: Change in Architect of Record Walmart Store#2901 180 North King Street Northampton, MA 01060 Dear Mr. Hasbrouck, Please be advised the effective August 31, 2015, Paul McManus (previous license # 32031) has elected to not renew his license to practice architecture in the State of Massachusetts. Going forward, John H. Heiman (license # 32283) will assume all responsibilities as the Architect of Record for the above referenced project. Mr. McManus and Mr. Heiman are employed together as principals at the same architecture firm; therefore the transition of responsibilities in this regard will be coordinated and efficient. Mr. Heiman will seal any future changes to this project. Should you have any questions pertaining to this matter, please do not hesitate to contact either of us. Sincer Jo H. Heiman Paul T. McManus John H.Heiman,Architect Page 1 of 1 1437 South Boulder,Suite 550,Tulsa,OK 74119.3609 p:918.587.8600 f:918.587.8601 SGA Design Group, P.c. I TRANSMITTAL SIR � �2015 � 1437 South Noma 7 Suite 550 i �-� Tulsa.Oklahoma 74119.3609 :918.587.8600 f f:918.587.6601 Electric,Plumbing&Gas inspections www.sgadesigngroup.com Northam ton,MA 01060 ® ° Date 9/9/15 Attention Louis Hasbrouck From Meenakshi Krishnasamy Company City of Northampton SGA Proj. # 1452013 212 Main Street Project Name Northampton, MA Suite/Bldg g 2901 City/ST/Zip Northampton MA 01060 Routing UPS - 2nd Day Country United States Copy Phone (413) 587-1240 Fax _ E-mail Iasbrouck@northamptonma.gov Quantity Descripton 2 Revised sheets of construction documents 2 Sets of structural calculations UJ6� 1 Architect of Record change notification letter 2 Revised project specifications 1 CD of revised drawings Remarks Mr. Hasbrouck, Find the revised construction documents enclosed for your review and files for Walmart store #2901 - Northampton, MA located at 180 North King Street. Please contact me if you need further information from us. Thank you, Meenakshi Krishnasamy,AIA, NCARB SGA Design Group 1437 South Boulder Ave., Suite 550 Tulsa, OK 74119.3609 918.587.8602, ext. 222 (direct) meenakshik(d-)sgadesigngroup.com Signed