Loading...
Flood Insurance Study - 1976 as TIFFLOOD INSURANCE STUDY CITY OF NORTHAMPTON, MASSACHUSETTS HAMPSHIRE COUNTY NOVEMBER 1976 U.S. DEPARTMENT of HOUSING URBAN DEVELOPMENT FEDERAL INSURANCE ADMINISTRATION 2.0 AREA STUDIED 2.1 Scope of Study 2.2 Community Description 2.3 Principal Flood Problems 2.4 Flood Protection Measures 3.0 ENGINEERING METHODS 3.1 Hydrologic Analyses 3.2 Hydraulic Analyses 4.0 FLOOD PLAIN MANAGEMENT APPLICATIONS 4.1 Flood Boundaries 4.2 Floodways TABLE OF CONTENTS Page 1.0 INTRODUCTION 1.1 Purpose of Study 1 1.2 Coordination 1 1.3 Authority and Acknowledgments 1 2 2 4 4 8 8 12 12 12 5.0 INSURANCE APPLICATION 16 5.1 Reach Determinations 16 5.2 Flood Hazard Factors 17 5.3 Flood Insurance Zones 17 5.4 Flood Insurance Rate Map Description 18 6.0 OTHER STUDIES 18 7.0 LOCATION OF DATA 8.0 BIBLIOGRAPHY AND REFERENr1S Figure 1 Vicinity Map Figure 2 Flooding, April 1976, Oxbow, Northampton, Massachusetts Figure 3 Flooding, April 1976, Oxbow, Northampton, Massachusetts 6 Figure 4 Northampton Dike and Pumping Station 7 Figures 5 -6 Frequency Discharge /Drainage Area Curves 9 Figure 7 Floodway Schematic 16 Table 1 Floodway Data Table 2 Flood Insurance Zone Data Exhibit 1 Flood Profiles Connecticut River Mill River PUBLISHED SEPARATELY: TABLE OF CONTENTS continued FIGURES TABLES EXHIBITS ii Panels O1P 02P Panels 03P 07P Page 20 20 3 5 14 19 Exhibit 2 Flood Boundary and Floodway Map Index Flood Boundary and Floodway Map Panels 250167 0001A -0002A Flood Insurance Rate Map Index Flood Insurance Rate Map Panels 250167 0001A -0002A 1.0 INTRODUCTION 1.1 Purpose of Study FLOOD INSURANCE STUDY The purpose of this Flood Insurance Study is to investigate the existence and severity of flood hazards in the City of Northampton, Hampshire County, Massachusetts, and to aid in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. Initial use of this information will be to convert the City of. Northampton to the regular program of flood insurance by the Federal Insurance Administration. Further use of the information will be made by local and regional planners in their efforts to promote sound land use and flood plain development. 1.2 Coordination The U.S. Geological Survey and the U.S. Soil Conservation Service were contacted in order to minimize possible conflicts or duplica- tion of effort. On March 10, 1975, a meeting was held with the city officials at the office of the U.S. Army Corps of Engineers' New England Division, for the purpose of discussing the status of the study. A brief discussion was held on the Flood Hazard Boundary Maps. The final coordination meeting was held on June 16, 1976, to review the results of this study. The meeting was attended by city officials, representatives of the Federal Insurance Administration and the U.S. Army Corps of Engineers, and the public. The study was accepted. 1.3 Authority and Acknowledgments The source of authority for this Flood Insurance Study is the National Flood Insurance Act of 1968, as amended. The hydrologic and hydraulic analyses for this study were performed by the U.S. Army Corps of Engineers, New England Division, for the Federal Insurance Administration, under Inter Agency Agreement No. IAA- H -2 -73, Project Order No. 4 and IAA- H- 16 -75, Project Order No. 22. This work, which was completed in November 1976, covered all significant flooding sources affecting the City of Northampton. 2.0 AREA STUDIED 2.1 Scope of Study This Flood Insurance Study covers the incorporated area of the City of Northampton, Hampshire County, Massachusetts. The study area is shown on the Vicinity Map (Figure 1). Floods caused by the overflow of the Connecticut and Mill Rivers were studied in detail. Detailed studies were not made for Basset Brook, Roberts Meadow Brook, Broad Brook, and other minor streams in the area. Due to the lack of current and planned development or to the surrounding topography, flooding on these streams was studied by approximate methods. The areas studied in detail were chosen with consideration given to all forecasted development through 1981. 2.2 Community Description The City of Northampton is primarily a residential and manufacturing city, located in west central Massachusetts, approximately 90 miles from Boston and 150 miles from New York City (Reference 1). Bordering Northampton are the Towns of Easthampton, Westhampton, Williamsburg, and Hatfield. The city has a total land area of approximately 35 square miles, and a 1970 population of 29,700, or a population density of approximately 850 persons per square mile. The terrain is hilly with elevations ranging from 200 feet National Geodetic Vertical Datum of 1929 (NGVD) along the central section to 800 feet NGVD along the western part of the city. The area along the Connecticut River on the east is fairly level. Temperatures in the region range from occasional highs slightly above 100 F to lows below -20 °F. The annual precipitation averaging 47 inches occurs generally from November through April. With the completion of the local flood protection project in 1941, the floodprone areas along the Connecticut River are, in general, located east of Interstate 91. Along the Mill River outside of the protected areas, the notable flood plain areas are located in the lower reaches of the river and in the area bordering North Main and Spring Streets. Numerous city streets, state and interstate high- ways, and the Boston Maine Railroad cross the existing flood plains. Continuing economic development within the study area is expected, and pressure leading to intensified flood plain use will undoubtedly accompany such development. Some development along the low -lying areas of the tributaries can also be expected. l 2.3 Principal Flood Problems Floods on the Connecticut River have resulted from excessive rain- fall alone or in combination with snowmelt runoff (see Figures 2 and 3). Spring rains accompanied by melting snow in March 1936, resulted in the greatest flood known on the Connecticut River at Northampton. Another major flood, occurring in September 1938, resulted from a week of almost continuous rain culminating with heavy rains associated with an intense hurricane which passed up the basin. The U.S. Army Corps of Engineers has since constructed an upstream system of nine flood control reservoirs which will modify future floods in the area. Recurring March 1936 and September 1938, floods on the Connecticut River at Northampton, modified by the reservoir system, would have peak discharges of 187,000 and 148,000 cubic feet per second (cfs), respectively, compared to experienced flows of 244,000 and 189,000 cfs. Two major floods have occurrred on the Mill River in recent years. The flood of September 1938, the maximum flood known on the Mill River in the Northampton area, was caused by rainfall associated with an intense hurricane. In August 1955, a peak discharge of 6300 cfs was recorded at the U.S. Geological Survey gaging station in Northampton. This is the maximum flow on record since establishment of the gage in October 1938. 2.4 Flood Protection Measures The U.S. Army Corps of Engineers has completed protective works at Northampton which include an earth dike approximately 1 mile long, in the eastern part of the city, affording protection against high water from the Connecticut River, and an earth dike and concrete wall approximately 0.5 mile long in the western part of the city which affords protection against floods on the Mill River and backwater from the Connecticut River (See Figure 4). U.S. Army Corps of Engineers' dikes are built to provide a minimum of 3.0 feet of freeboard, which is the vertical distance from the design water surface to the top of the dike. Freeboard is provided to ensure that the degree of protection will not be reduced by unaccounted factors. These might include the effect of erratic hydrologic phenomena, future development in the watershed, embank- ment settlement, trash and debris, and variation of hydraulic resistance or other coefficients from those assumed in design. The design or effective height of a dike is, therefore, theoretically exceeded when the computed water level is within 3 feet of the top of dike. As shown on Flood Profile Exhibits O1P through 04P, the computed 500 -year frequency flood level on the Connecticut exceeds the design or effective height of the dike, somewhat, even though it is not actually exceeding the top of dike. 5 0) z ro Q a) tri 0 Ul 0 0) 0 0 U 6 7 0 4) ua ro P.4 ro a) 0 0 0 The upstream flood control system completed by the U.S. Army Corps of Engineers, consisting of nine reservoirs located on upstream tributaries of the Connecticut River, will have a modifying effect on future flooding in Northampton as detailed previously in Section 2.3 of this text. The original plan for flood control in the basin consisted of a system of dikes in combination with upstream reservoirs. The dikes and many of the reservoirs have been constructed. It is noted, though, that although the dikes at Northampton provide a high level of security, the degree of protection originally planned for is not provided. 3.0 ENGINEERING METHODS For flooding sources studied in detail in the community, standard hydrologic and hydraulic methods were used to determine the flood hazard data required for this study. Floods having recurrence intervals of 10, 50, 100, and 500 years have been selected as having special significance for flood plain management and for flood insurance premium rates. The analyses reported here reflect current conditions in the watersheds of the streams. 3.1 Hydrologic Analyses Hydrologic analyses were carried out to establish the peak discharge frequency relationships for floods of the selected recurrence intervals for each stream studied in detail in the community. Annual peak discharge- frequency relationships for the Mill River were derived by statistical analysis of 35 years of discharge records from the U.S. Geological Survey gaging station on the Mill River at Northampton. Values of the 10 50 100 and 500 -year peak dis- charges were obtained from a log- Pearson Type III distribution of annual peak flow data (Reference 2). Peak discharge- frequency values for the selected recurrence intervals for the Connecticut River were also developed using a log- Pearson Type III distribution of annual peak flow data and then adjusted to reflect the modifying effect of the system of upstream reservoirs. This modified frequency data was previously developed and published in a U.S. Army Corps of Engineers report (Reference 3). Frequency- discharge, drainage area curves for the Connecticut and Mill Rivers are shown in Figures 5 and 6. The modifying effect of the U.S. Army Corps of Engineers' upstream flood control reservoir system is reflected in the discharges for the Connecticut River. 3.2 Hydraulic Analyses Analyses of the hydraulic characteristics of streams in the community were performed to provide estimates of the elevations of floods of the selected recurrence intervals along each stream studied in detail. 8 Tams ...0 E� BTi �Iai :CO::EE' E �1.. ..II.■.GE■EEEIE: .11.1293:-- �1II���3: ■Ia■.GL.GE:E.•: 111 1111:= mourn 1111 B m ■1�■ ..':::::::::E UU..• C� BE' is 3pEIE�I�E Ep■p EGE ■E E:::::..... G 3: 1 1 11 .'4" I•: E E:: --C BB P ill1 L:I LG�� E lEa EEEll��ll :lEll m �98l� 1,...■. ■:•■.0 I •U• ■C=3 :a,- 3II I ::I IE. a I l.' EE B° C:_:S. dli bliI •.:E■Q` 3.■___i L EE C: i.miiiii .ii. ir.2.s EE :E G Q�- -.a� II3 Iu EEG G .I.LI E l: G i6�.I.__ P nng-- 3 u� s iaia'�" l:al� 3'Bi��i 6GG: u3:8 IlI'i"'•G G EE E: 8 BI i GGE- --:I'L: LGGG•E:TEQ- f m—BM IIIu:::::.E �:......�__I� ___I I'iaiaiuI'a:::ac�;;:oEE;�eEE;� E8E 8T�E ii:E6:::::..... EEEi: =.mi�E991,.lE:::a.■GLE■::..::-- aa: L:EEL: GG EEPEE: 9 °Z: G ::G: uIW■EEu■ rli i1::1: .MII.. :CG. °:CQE B �E3 I II II' I "au:..:G:GG::E:B1E:1 in em 1 ::1 .mI :a :E MINIM ;E: 11•1111 ,3 I. u■ u.____ 3C�aj: :,:plaL:... j '•ae•.- °CC l: E==E U •l n a a E 9EE9: E E E 1'.: M E�. E.... E� ER 1 ■■••.■c•■■..___ni -,PI :ua ,::I iin :■i°G ii °M II CMI3I ::G•'•'" °QQ -n__ nu. ■I° E■.ui iC:3�C__.MS�3riiniana mm■:••••••:• �1E:: ..EE:E: EQ■zs- _a- l WA ■■.1•- •,n___�I I I n■n ■n ..Im ■,.n__- 3- CEE 1 ■•.1142:1 ri :nuai:::.iu•::■.■:::: E ri'u n 3i u-.Is___Mn NMI OR „L I ,.nn C ■G■::oIMIMMM J_■� t.- •1____in,n. unu■ ..n.■ ..__■pmnM■.n■__-- -_____M a CEQ. iC-- i IM--- M- ilm: In1 ,nnn■III. °:�'.•:::Qii'Irii:I°i E:C•:._- �sIM_�-.: .n' CCii 311' a"LMCnG ■'M......... nn..._ -ss_ l.•■■ 1111 m n.. ____mm n.• IM .■n nnINIM- 3 ,u.I::CC: i 3:°a_M���i C :::1:•i?6 [g_y::Mri■ .0 Q i° 411 u•M,•■... mmn ip Mm.n 3:aLaE 1 ::::Q:3... tea;= :uu ;:..IL.IEG: a:..l...... 3i u:i 3 E r anninn1'1 I n E :Ci .I ■■M ■.....Q °e 411 .l s •r, IN II .n. E E Q a s3� 3 a:a h....i' J m s :•I a—. _.MIEN n_ n.m mn n■ w-_n__- iv _�mu Pu Iu a a:Qa::u: .i: -�C����� E I L I: E:: 3::•. �i C 1 L :'al. I .i u l :I C °::C mionvonmi MI id -.s.. I Q--- 1111 I Il IE ::E IE:■ -1 1 ..E:E ..:E:: y■ IE E.:.■ -F--- L.i ..E:ILy =11111111.411. �iL... °I::: E O M.- .n_ --MIEN �X, "L :E:•8E "-II 5I IIMINNIMI --hiI IPa H. I :LIFO :Q i Q..r °te a: I:■. h1 L IN i. :a2C1� =l a III:I:ii: C:: GCCC: I Lu :LIFO G.....____' _1 ..G3... 3 un E: E .l. .M y' 1- C L: ,.n 114 n C.:■.-. .I E i :•:::.I°° I...u. ...•..I`: °m O' i I E [B M M, I a IEI :g i E 3 m G 9 �EE -1 5 .0 n•■■C.■3-_-_ _NMI 44411 C n m u.Ei l •ICiCCM. �muu, nn11 l°EEE....:::EI n nu aui:::l::Gl• 1•—. _:I Xi• =I 4111,••:■ uui:i■■... MIN :E�: ;�I M C C CI °°ti■n =ii,,i �n n i u:CC :a n ii■ ii i -.•-ss UM 3 L.....■.. .•.•i:aa:■:. VIM lnu- ■.■u:1a-°.-_�- J .2C in:ariinai •■IN uull unC:: i 1•1111••• n•a m 44 11•••••. MI ■..■■1111 ..nn s :cal G:GGG:LQ:::::�°C'=C =E n: iva:: i::■■. .:::G::::u:a.3:::::::� miniu E::CCE•:':::Qi: 1::::= Mhi n''P'Ii nE I L m'u m...l .uu. ---0 II.II::�IBEGEEa::u=: �:a =BIC I:Ii, :■■C_::.u..a IM -C� 3 1; a a.:..L :. .MIN n E:GGG::::: °nC� -CT C E :::__8:3:3: E.• G :.:E 8 __I I 1 a E'L'°••'� E:E 3' L .1_.-203.--9 E' :•l•••:: o8Q I:C �3: I l "6a L::tl ..n. :.G aaal.. 3 L ......::G::. Qa��3 °3a: ,1 a G 11 11 11 I Iu:EE::: n. Ci°Eaili i BIEE99 .l.l Mien .....---E -s n, E: I M I EN I�E I:E C 4 pl IIN .u E..�....E Q E' .I °9_l E lt hhIII h.I a EE e ..i :u n. u... .L. E E L3 m IIII •:G M..: IL E ....a 1E EE 3EGLE EeiE:2 am B9 M l lhl aaaddlEE IuI.I.......... 3: -n h8: .EE.EEE..E.- ---B°° a hlhli.Ii..lhu......?._ E..a.o •..N. LaI E. G■:l•. Q..:. CG:C G G L n..E::EG :3 :QQ: °GI 3 E mE =BB h h 31h 11 (h -r I :a�.�.'MX E e MI :'::B• a �:LEEEQa:'3:a�iC'i' III'3 �E:9EEE:: 1. l.. �e° E °::G:�e•E•:.'.3i:I 0 0 0 0 0 0 8 0 m 8 0 0 8 (CNO33S N3d 1333 31813) 29 IVHDSIO NV3d 0 cD 0 O 8 0 0 P 8 eA LaJ esC acC gict C) W W W C z a et cc 'o 'g 2 et CC 0 S u 3 W 1— cc a O FIGURE 5 glgammg gm. ogginouggnmgmcm.. gm am. IE:EE n i E. i N .IM. I II::1 E ig N=11: =AIN ■r O ii C._-__ i um i in.C'n'C:•■'.... .i._.i_C__— C... ;...:::EEE•••••••••• 1 1 E:::::: m aa -.1. 1..•, o.... .u....�...; _�ii1.1.1.n.... ...:E: 1�EC: M•111 E i:: nu.:u: E E: 1 1m:1.. u.C■ M. 1•11lnne u_.C■;.1•11•21..71 1111. e..: E::.: ..i i MM MO -....E -m- MI :...I.::: 0 1.--- -11 nn ..1. .Ci...E:: _�II ;E C E EE C�:I �i ��C ::C: l n l ii u..... inl11•uU CC:C: EG .....:,1.■.u..— 111.1.. m E MIMI EEII:.:I »�E .EG:E'.E =EEE _N ..iii i:: C..T: =E E� C ::E.�E� C� ��ii:'�C ::C::.:' I »uuu 1222 N= I 2 MC_ =ii 1 �Eu uu I. iE: a EEEE h:..e:'�� EE mwm um :EEEe�� .'E:IE °E _��II °II;:L ==CSC: ....E.e. .e.e AEEEEE= =EE_ __'i1llSll EI° ee E E EE gl:ll:t:...::E ..._._Ea= ....u.IIII:EE.E'E al uhI MOW. I �e aEE 1 •.u. EE C 9E EEa MM INOMMMIMMINM111•11nnng M .p. 1�.� .n E ■E::..::i:Ii:i.h...: .11w1 1n..1.1,.4`11: In uuI .u..i: I i en 5 E. 1- 1b u n. E:.u EE E '.III:.1,. E: :EEE: C:::ri. ,:E:- ::ECi 1 E ..1 I1U 1� u:•.Iu ....u :quip °e s EE E i i i.. i......... w >'�IICIIEEBe :C:C E °CSI:.:. EE's =:..E �::C� iE Eil� I EII =.u..u uIIi��.�:�CBC �..0 a .C..: ::E:E. 11 CE:.,.. ..C.C. ..:E:in I ��IM- 1in I 1i l .i 'ni:i i MC :EE.E 11 ntu...U- ....M. EE- �i 1 i I is co ■.:.uu..... E:: iii� 2 1=_ 111: n iZ,•i� O :i:::..ta.:. i':E::EEaEEEEEEE_ e n, ■.,.■■■E i M 111.11 un i .�1.CCCC 1•11. e..,� C.C. o E E E C'' C -...o- -M- ...0 ■uu n u .v v MMM 11.1 e m v.ii i I 1 v �1' i I i■ I l..U... M2... ;mn••:•U :i I`. i n1 Ci i.. I Gi i 1 .G "'C'u i 1."=••1"== •.0 .-E...:: -.—�11 111 I i:: Ig• �1;° .::.e:E:::I::i G: C u.....-- -mun.n.. _u�e j M;,.� EE 11 MM :S o EES I E EEEEEE� 3II139II qe ..e. 9i i1:1'.�'��:7C: ....1:12-21-10=== ::::1- E E EE EE�y� ::::::iEEE. EEG5 F :::EE EEEEEEEEE -S� ...;1 =Imo i■ CC:CC --ii11 11 .U...UE.....In UU... MM= E_MMMC .-...t ..n C::::� M�0 uiw1mi: 11.• EE u ri E U r "'i=m ug 1E sumo 1101=1121 EE: Eva= s i .r.....- :::n� E:E �E:� aur EE:...oiC"• G °0 0M-C■ ri:ii'l9�mC „•■i:::;..... E E::.. -.i i -■..m m 11.1.1.1 MM IMMINIIIIIIIUMININIM gin: i• ::::::::E�= CU= oU .E11.I I it'i g•..- CE:E::u "•••m ..0 ∎C (0NO33S aid 1334 01810) 3 DU VFW! d NNV3d 0 M 0 1- x W 0 GICC 0 J W j w 0 O CC 'c M E C Lu z CC a O e o O I- u. z W cc fi e d W O FIGURE 6 Water- surface elevations of the 100 -year frequency flood on the Connecticut River and selected cross sections were taken from a previously published U.S. Army Corps of Engineers' study (Reference 4). The 100 -year flood on a river is a flood having a magnitude that might be expected to be exceeded on an average of about once per 100 years, or would have an expected 1 percent chance of exceedance in any one year. Water surface elevations for the 10 50 and 500 year frequencies were determined by elevation discharge relationships at selected cross sections within the study segment. Flood profiles were drawn between computed cross sectional water- surface elevations to an accuracy of 0.5 foot for floods of the selected recurrence intervals (Exhibit 1). For the Mill River, water surface elevations of floods of the 10 50 100 and 500 -year recurrence intervals were computated through use of the U.S. Army Corps of Engineers' step- backwater computer program (Reference 5). Cross sections for the backwater analyses for the Mill River were determined by field surveys and located, in general, at close intervals above and below bridges and dams in order to compute representative flood profiles. Locations of selected cross sections used in the hydraulic analyses are shown on the Flood Boundary and Floodway Map (Exhibit 2). Flood profiles were drawn between computed cross sectional water- surface elevations to an accuracy of 0.5 foot for floods of the selected recurrence intervals (Exhibit 1). All elevations are measured from National Geodetic Vertical Datum (NGVD); elevation reference marks used in the study are shown on the maps. Channel roughness factors (Manning's "n for these computations were assigned on the basis of field inspection of flood plain areas and on previous studies by the U.S. Army Corps of Engineers. Values of 0.07 were adopted for the overbanks and 0.035 for the channels. Energy losses due to changes in cross sectional areas of flow were computed using coefficients of 0.3 and 0.5 for contraction and expansion, respectively. The step- backwater computations used to determine flood levels for the Mill River, in accordance with Federal Insurance Administration procedures, make no allowances for debris, excessive turbulence, or river bends which might effect flood levels experienced during a major flood. It is, therefore, concluded that the computed profiles represent minimum levels that might be expected under conditions of the various magnitudes of flow. The selection of "Manning's" coeffi- cients for both the Mill and Connecticut Rivers was based largely on the calibration of the backwater model against experienced flood levels and known stage- discharge ratings. Flooding on Basset Brook, Roberts Meadow Brook, Broad Brook, and other minor streams was approximated using information received from local sources, field inspection, and normal depth analysis. 4.0 FLOOD PLAIN MANAGEMENT APPLICATION 4.1 Flood Boundaries A prime purpose of the National Flood Insurance Program is to encourage state and local governments to adopt sound flood plain management programs. Each Flood Insurance Study, therefore, includes a flood boundary map designed to assist communities in developing sound flood plain management measures. In order to provide.a national standard without regional discrimina- tion, the 100 -year flood has been adopted by the Federal Insurance Administration as the base flood for purposes of flood plain management measures. The 500 -year flood is employed to indicate additional areas of flood risk in the community. For both the Connecticut and Mill Rivers, the boundaries of the 100 year and the 500 -year flood have been delineated using elevations determined at each cross section; between cross sections, the bound- aries were interpolated using topographic maps at a scale of 1:6000, with a countour interval of 5 feet (Reference 6). In cases where the 100- and 500 -year flood boundaries are close together, only the 100 year flood boundary has been shown. For streams studied by approximate methods, the boundary of the 100 year flood was delineated using the town topographic maps (Reference 6). Small areas within the flood boundaries may lie above the flood elevations and, therefore, not be subject to flooding; owing to limitations of the map scale, such areas are not shown. 4.2 Floodways Encroachment on flood plains, such as artificial fill, reduces the flood carrying capacity and increases flood heights, thus increasing flood hazards in areas beyond the encroachment itself. One aspect of flood plain management involves balancing the economic gain from flood plain development against the resulting increase in the flood hazard. For purposes of the Flood Insurance Program, the concept of a floodway is used as a tool to assist local communities in this aspect of flood plain management. Under this concept, the area of the 100 -year flood is divided into a floodway and floodway fringe. The floodway is the channel of a stream, plus any adjacent flood plain areas, that must be kept free of encroachment in order that the 100 -year flood be carried without substantial increases in flood height. As minimum standards, the Federal Insurance Administration limits such increases in flood heights to 1.0 foot, provided that hazardous velocities are not produced. 12 The floodway for the Connecticut River was computed on the basis of a fixed top width as outlined in the HEC -2 Water- Surface Profiles users manual (Reference 7). The 100 -year flood could, in general, be conveyed in a 3000 -foot floodway without raising levels more than 1.0 foot. The floodway for the Mill River was computed on the basis of a fixed top width with the left and right encroachment stations made equidis- tant from the centerline of the channel. Below the U.S. Army Corps of Engineers' local protection project drop structure, the width of the floodway varies from 500 to 800 feet and follows the existing Mill River course to the Oxbow and then continues along the southerly course of the Oxbow to the junction with the Connecticut River. Above the drop structure, the 100 -year flood could, in general, be conveyed in a 150 -foot floodway while adhering to the Federal Insurance Administration criteria. Results of the floodway computations are tabulated at selected cross sections for the Connecticut and Mill Rivers in Table 1. As shown on the Flood Boundary and Floodway Map, the floodway boundaries were determined at cross sections; between cross sections, the boundaries were interpolated using topographic maps (Reference 6). In cases where the floodway and 100 -year flood boundaries coincide, only the floodway is shown. Floodway data contained in the table include information which treats the entire width of the Connecticut River; however, floodway delineation on•the maps only shows the floodway on the Northampton side of the river. The area between the floodway and the boundary of the 100 -year flood is termed the floodway fringe. The floodway fringe thus encompasses the portion of the flood plain that could be completely obstructed without increasing the water- surface elevation of the 100 -year flood more than 1.0 foot at any point. Typical relationships between the floodway and the floodway fringe and their significance to flood plain development are shown in Figure 7. BASE FLOOD WATER SURFACE ELEVATION O co CO O l O l O O O O O H o o o o d' M o d' O CO d' Ln O O d' O u) O O O O H O O O O r-1 O O O H O O O O WITHOUT FLOODWAY (FEET NGVD) co M w O O N M d' In Ln N N N N N H H H r-I 1--I CO O O O Ln O Ol i Ol In co Ol m O C` H H Ol N M M M l0 o O M M CO d' 0 0 In IO dl r-1 N N N N N N M M M M d' N Ol Ol r-I N M d' d' r-I H 1-1 H H r-1 r-1 r-1 r-I r 1 rl r-I r-1 N N N N N C O 0 d' O l N N CO Ill I) 0 N N N N N H r-I H ri H O1 O O 0 11) d' N r-I M II) lO M d' O N IC1 r-1 d' N CO CO CO N. O r-I M d' Ol Ln H H LO If) Ol r-I M N N N N N CO M M CO d' N. Ol Ol r-I N M d' d' H H H H H H H H H H H H H N N N N N FLOODWAY MEAN VELOCITY (FEET R SE PER Ol dr LO 1 l0 N M M M N IO d' M N CO Ol 0 O l0 N O In M dl Ol N 0 O H r-1 lO N N 0 0 d' M CO 0 r-1 d' 1. CO 01 H r-1 H H (ZSH axvnZs vaaV NOLLOHS 0 0 0 0 0 0 0 0 0 0 d' d' d' Ol O N Ol N CO 00 0 In Ln d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O r-1 CO 0 LC) M N CO O N In d' O In O co Ln t.n M CO Il) Ill l0 N dr. N M r 01 N ("n N r CO LC) r-I CO H H H H r-1 CO H r-I 1-1 r-1 r-I N N r-1 WIDTH (FEET) N N N N N N 0 0 0 0 0 00000 000C d' M CO Cr) H N N N O O O O O In Ill I.n 0 0 0 0 0 0 Ill O LO O 0 0 0 0 In d' In M Ill If) d' M M N N If) N O CO CC Ill In r-I r-1 r-1 r-1 r-1 M r-1 ri r-I r-1 r-1 r-I rl r1 FLOODING SOURCE DISTANCE 0 0 0 rH Ln r 1� H M d N I 01 ma) Ol Ol Ol CO M 0 0 0 O N N 0 N N In N 0 CO N 0 CO O d' H M I� d' U) r-1 r-♦ N d' N d' 0 0 1� Ol Ol O N H O O H H N N N N M d' d' d' In CO In w l0 1 1 CROSS SECTION Urt+WUQw 0 IA z 0 U g4 ploQwwc.9xHhazoaota4 1-4 1---A H m E •H 3D 4J 0 0 U 0 N P� m rd N �1 rj m r4 E N TABLE 1 CONNECTICUT RIVER-MILL RIVER FLOODWAY DATA 0 a1 0 m a) W W UJ 0 G M o wet a c z C O o 1 o O z 1- c Q W TABLE 1 FLOODWAY DATA l0 0 o to 0 0 BASE FLOOD WATER SURFACE ELE WITHOUT FLOODWAY ;FEET NGVD) o co l0 61 In r 0 i n d 01 N m N N O1 M ■0 CO l0 szr tr1 O M l0 cr 01 N CO N N M M FLOODWAY MEAN VELOCITY (FEET l0 N N N V u1 l0 CO -4 SECTION AREA (SQUARE FEET) O O O O N N M r-I CO l0 CO N N rl H WIDTH (FEET) O O O O 1.11 O to CO r r1 H H FLOODING SOURCE DISTANCE LO rl CO cr N N CO N l0 CO CO OD CROSS SECTION 124 r0 W a) a•i a H o U1 0 a1 0 m a) W W UJ 0 G M o wet a c z C O o 1 o O z 1- c Q W TABLE 1 FLOODWAY DATA t FLOODWAY FRINGE 5.0 INSURANCE APPLICATION 5.1 Reach Determinations FLOOD ELEVATION WHEN CONFINED WITHIN FLOODWAY 100 -YEAR FLOOD PLAIN FLOODWAY STREAM -4- CHANNEL' -111. ENCROACHMENT AREA OF FLOOD PLAIN THAT COULD BE USED FOR DEVELOPMENT BY RAISING GROUND 16 SURCHARGE' Figure 7. Floodway Schematic FLOODWAY FRINGE ENCROACHMENT FLOOD ELEVATION BEFORE ENCROACHMENT ON FLOOD PLAIN LINE AB IS THE FLOOD ELEVATION BEFORE ENCROACHMENT. LINE CD IS THE FLOOD ELEVATION AFTER ENCROACHMENT. 'SURCHARGE IS NOT TO EXCEED 1.0 FOOT (FIA REQUIREMENT) OR LESSER AMOUNT IF SPECIFIED BY STATE. In order to establish actuarial insurance rates, the Federal Insurance Administration has developed a process to transform the data from the engineering study into flood insurance criteria. This process includes the determination of reaches, Flood Hazard Factors, and flood insurance zone designations for each flooding source studied in detail affecting the City of Northampton. Reaches are defined as lengths of watercourses having relatively the same flood hazard, based on the average weighted difference in water surface elevations between the 10- and 100 -year floods. This dif- ference does not have a variation greater than that indicated in the following table for more than 20 percent of the reach. rTh Average Difference Between 10- and 100 -year Floods Variation 2 to 7 feet 1.0 foot The Connecticut River was considered to be one reach. Two reaches meeting the above criterion were required for the Mill River. Locations of the reaches for both the Connecticut and Mill Rivers are shown on the Flood Profiles (Exhibit 1). 5.2 Flood Hazard Factors The Flood Hazard Factor (FHF) is the Federal Insurance Administration device used to correlate flood information with insurance rate tables. Correlations between property damage from floods and their FHF are used to set actuarial insurance premium rate tables based on FHFs from 005 to 200. The FHF for a reach is the average weighted difference between the 10- and 100 -year flood water surface elevations expressed to the nearest one -half foot, and shown as a three -digit code. For example, if the difference between water surface elevations of the 10- and 100 -year floods is 0.7 foot, the FHF is 005; if the difference is 1.4 feet, the FHF is 015; if the difference is 5.0 feet, the FHF is 050. When the difference between the 10- and 100 -year water surface elevations is greater than 10.0 feet, accuracy for the FHF is to the nearest foot. 5.3 Flood Insurance Zones After the determination of reaches and their respective Flood Hazard Factors, the entire incorpoated area of the City. of Northampton was divided into zones, each having a specific flood potential or hazard. Each zone was assigned one of the following flood insurance zone designations: Zone A: Zones A7, Al2, and A13: 17 Special Flood Hazard Areas inundated by the 100 -year flood, determined by approximate methods, no base flood elevations shown or Flood Hazard Factors determined. Special Flood Hazard Areas inundated by the 100 -year flood, determined by detailed methods; base flood elevations shown, and zones subdivided according to Flood Hazard Factors. Zone B: Zone C: Table 2, "Flood Insurance differences, Flood Hazard flood elevations for each community. 5.4 Flood Insurance Rate Map Description 6.0 OTHER STUDIES Areas between the Special Flood Hazard Area and the limits of the 500 -year flood, including areas of the 500 -year flood plain that are protected from the 100 -year flood by dike, levee, or other water control structure; or, areas subject to certain types of 100 -year shallow flooding where depths are less than 1.0 foot. Zone B is not subdivided. Areas of minimal flooding. Zone Data," summarizes the flood elevation Factors, flood insurance zones, and base flooding source studied in detail in the The Flood Insurance Rate Map for the City of Northampton is, for insurance purposes, the principal result of the Flood Insurance Study. This map (published separately) contains the official delineation of flood insurance zones and base flood elevation lines. Base flood elevation lines show the locations of the expected whole -foot water- surface elevations of the base (100 -year) flood. This map is developed in accordance with the latest flood insurance map preparation guidelines published by the Federal Insurance Administration. An alternative flood management plan developed by the U.S. Soil Conserva -tion Service is contained in a report entitled, An Analysis of Alternative Flood Management Plans in Upstream Watersheds (Reference 8). The report outlines nonstructural plans such as flood plain delineation, flood proofing, land use regulations, flood insurance, flood warning and evacuation plans as methods of providing substantial reduction in flood damages to existing properties in the Mill River watershed. Incorporated into this study were data published previously by the U.S. Army Corps of Engineers in the reports entitled Connecticut River Basin Program, Supplemental Flood Management Study (Reference 3) and Connecticut River Basin Comprehensive Water and Related Land Resources Investigation (Reference 4). 18 1 Flood Insurance Rate Map Panel 2 Weighted Average 3 Rounded to Nearest Foot FLOOD INSURANCE ZONE DATA CONNECTICUT RIVER -MILL RIVER BASE FLOOD ELEVATION 3 (FEET NGVD) al al a ni oz) rd a) a) a) a) a) 0) co 0 1 I in m m a) a) a) ro I'd It aNOZ f`'1 N H H N FLOOD HAZARD FACTOR Lfl O Ln LID lfl Cr) O O O ELEVATION DIFFERENCE BETWEEN 1% (100 -YEAR) FLOOD AND H Cr) l0 N H H in da N 2% (50 -YEAR) O 00 O O L tf) 4 II N H H I I I L— O M Ln 00 l9 Lo LO m I I I DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT Federal Insurance Administration CITY OF NORTHAMPTON MA (HAMPSHIRE CO.) v I 'IENVd N 0 O N N O O 0 O O H O O O 0 0 FLOODING SOURCE 1:4 H a a H W H N U U 0.S 0 0 H [0 rd Ed �a aaa W H Z 0 U TABLE 2 I This study is authoritative for purposes of the Flood Insurance Program; data presented here supersede all previous determinations. 7.0 LOCATION OF DATA Survey, hydrologic, hydraulic, and other pertinent data used in this study are on file through 1981 at the Office of the U.S. Army Corps of Engineers, New England Division, 424 Trapelo Road, Waltham, Massachusetts 02154. 8.0 BIBLIOGRAPHY AND REFERENCES 1. Department of Commerce and Development, Monograph, City of Northampton, Massachusetts, March 1972 2. Water Resources Council, "A Uniform Technique for Determining Flood Flow Frequencies," Bulletin 15, December 1967 3. U.S. Army Corps of Engineers, Connecticut River Basin Program, Supplemental Flood Management Study, July 1974 4. Connecticut River Basin Comprehensive Water and Related Land Resources Investigation, June 1970 5. Hydrologic Engineering Center, HEC -2 Water Surface Profiles, Generalized Computer Program, Davis, California, October 1973 6. City of Northampton, Topographic Maps, Scale 1:6000, Contour Interval 5 feet: Northampton, Massachusetts (1965) 7. U.S. Army Corps of Engineers, HEC -2 Water Surface Profiles, User's Manual, October 1973 8. U.S. Department of Agriculture, Soil Conservation Service, An Analysis of Alternative Flood Management Plans in Upstream Watersheds, June 1975 U.S. Geological Survey, Map of Flood Prone Areas, Scale 1:24,000, Mt. Holyoke, Massachusetts, and Easthampton, Massachusetts, 1969 U.S. Army Corps of Engineers, Survey Sections Of Mill River, July 1974 U.S. Department of Housing and Urban Development, Federal Insurance Administration, Special Flood Hazard Areas, Northampton, Massachusetts, Hampshire County, May 1974 20 U.S. Geological Survey, 7.5- Minute Series Topographic Maps, Scale 1:24,000, Contour Interval 5 feet: Easthampton, Massachusetts, (1964); Mt. Holyoke, Massachusetts (1964) e oor a 111111111111111111111 milimumprmEENIEgems==========gasam=imuillemi••••••••••••••• iiimmilimmiummomomodualloraiumamilisommillmorammimulimm n 110 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111E111111111111111111111 imminimmommosimmilmommilimmilminimmlopommilim nomm............................••••••?••••••••••••••••••••••rmirmewmsommen••••••••••••••••• ni••••••••••••••••••• 1 00 1111 111 11111111111111111111 11111111111111111111111111111111111111111111 111111 1 111111111111110111IIIIIIIIIIIIIIIII 80 1.1 LEGEND 500 YEAR FLOOD 100 -YEAR FLOOD r q naE,M "BED OD 50 YEAR FLOOD 90 CROSS ,aa.oN 130 120 7 93.0 93.4 93.8 94.2 94.6 95.0 95.4 STREAM DISTANCE IN.MILES ABOVE MOUTH 95.8 96.2 r 96.6 97.0 130 120 100 90 80 70 110 H 0 x GI C1.1 1 ,01P 140 130 120 110 100 90 80 70 •o use 1 01 ICY -1•PP•P-P" -eme ioe e 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 11 11111 BERNEBEEMBEHHEIMMEMITMESEEMINEMENIIIIIIMENERMINE mus 1111111,11111 I 11110 97.0 97.4 97.8 98.2 C 1 98.6 99.0 STREAM DISTANCE IN MILES ABOVE MOUTH 99.4 99.8 LEGEND 500 YEAR FLOOD 100 YEAR FLOOD 50 YEAR FLOOD 10 YEAR FLOOD STREAM BED CROSS SECTION LOCATION 140 130 120 110 100 90 80 70 0 02P 150 130 6 120 110 q 90 70 50 1111141111111101 1 MINI V I11M11EGQMII UMW 041 JWI -'tl YLAINIIIIIM1O11111111e1111Y1111111 immliumpramplumulmmumurnerimmommmimmarnmommillimilillognimillimr IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III 1111111111111111111111 I 111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 e e m 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii ms o4 s MEMEMEMINIMMEMMEMMEMEMMMEMMEMMEMMEMEMEMMEMMEMEMEMEMEMEMMEMMOMMEMEMEMMEMEMMIIMMMEMMEMMEMMEMMEMMEMMEMMOMMEMMEMMEMMEMMEMMEMMEMEMMIMMOMM MMENMEMMEMMEMMEMEMMEMMEMMEMMMUMMIUMMEMMEMMEMMIUMMEMMMOMMOMMOMMINIMMOMMEMEMEMMEMMEMMEMMEMMEMMUMMMUMMIMPIMPEMEMEWWWWWIMMEMMOMM MEMMEMEMMEMMEMMIMMIMMEIMMEMMIMMMOMMEMEMEMMIMMMOMMOMMOMMEMMIMMMIMMOMMEMEMEMMEMEMMEMMEMEMEMEMEMMUMMIMMOMMOMMEMEMMEIMMEMMOMMEMOM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII tl -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 STREAM DISTANCE IN MILES ABOVE MOUTH 0.2 0.4 0.6 LEGEND 500 YEAR FLOOD 100 YEAR FLOOD 50 YEAR FLOOD 10 YEAR FLOOD STREAM BED CROSS SECTION LOCATION 0.8 1.0 150 130 110 90 70 50 1 W 0 1) 03P 170 150 130 110 90 70 :1 d 1 I E G A ll I e. ►I iC i ■■■■■■■■■■.0 r -,(y Ilia■■■■■■ ►l flhI ii i ■■!!1111! w�Tseam ....eeeee.NN...NNNEENENNNNm mam i mammu mm GGGGG milli GGGGGGGGGGGGGGGGGGGGGGGG 1111111! mom mum G■ G■■■■■■■■■■■■■■■■_■■■■■■■■■■■■■ NUM ■MIME fi GAi GG Yi li i ie� �u�ill M■ 111 1111 ■■■■■■111 i11�1 111111111 11111111111 11111111111111111111111111 111111111 ■II 11 I�■■■■■ M■.■■■.■.. m m.■ mourn nom .NIN EE NIM EMU ■■C ■1■.■C 1■■■■■ ■■ENEM IN I MEE C N■■■ 1 .N 111!1 ■I! ■1! ■I!!! ■I!!! ■I!! ■1!!E 11111111111111111111111111 E h:.■■■■■■■■■■■■■ a■■■■■■■■ r.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■G■■■■■■■■■■■■■■■■■■■■■■ ■■■c■ E■■.■■■■■us pa■■■■■ C7■■■■■■■■■■■■■■■■■■ mum= 11111 11111111111 ■11111■ 1111111111111 ■■1!111! ■■111 ■Il ■1111 I11111111111111 11111111111111 IIIIIIIIII ■■.■■.■..I..M■.a ■e. ■H, ■■■■..N.■■■.■■.■.■■■ ■N ■N■■■.. ■E■■■■■■ E■■�9 ■n■■■■■■■■ ig. p 1111111111111111111 111111 1 11 11 11 1 1!1 m 1:1111! 11111111 l 111111 11111111111111111111111111 IIIIIIIIIIIIIIIIIIIIIIIIIII�IIF1 1111111 Ra■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■N■ee_- -Rime ii-■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■E ■■11■■■■■■ m■■ mm•_ C: GiIw�IL�Mm mm: ii■! 9 mmm mawrN ■i ■N■ ■■■.J■y!■■■■_ ■.■■■■■■■■■■■i� ■E■■■�■■■■■i■■L- iiii IIII IIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIII� I I���h IIIIIIIIIIIIIIIIIIIIIIIIIII 111111 ■■.M■■■..■■■■■■■■ i.■ ■■■■..e■.■■■ Gn•■■ ■mER m■..� N.■■■■E■■■ ■E■■■■■■■■■■■■■■■ ir ■Al• ■-i- 3■-■■■■■■■■■■■ M■■■■■■■■■■■■■■ ■I� ..Eawwwmmmm a amm=■■■ AA■ mpmc■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■E■=■■■■■■■■ 6■ I E- -.■d■■■■■INIMM a ■■■E■. ■M■■■■■■■■■G■E■ -i. ■ii■■■■■■■■.■I ■e ■_.I u■■ E■ ■E■■■■■■■■■■-- iGMEMom RO p som ■■■IImmizmaii ■11■ ■.E i■ i■■■ >e 11�i 11� c i- z ■i■i■■i■■■■■■■■ ■■■■n■■ w_i!■■■■■ iii■■■■■■■■■■ II I 11111 I1IIIIIII1�11111111111111111111111111111111111111■ 11..■■.....■......■........... ■i i■i■i■u■.■■■■■■■■■ ■■...■•■M Ii■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■. ■E■■■■S ■■G ■■1 MMEMME ■I ■MEEM ■%%c mM I■■■■■■■■■■■■■■■■■■■ u m6 111111 iln i iiiiii ■ii!■i!■iiiiliiiieii 1 ii ■1111iiiiuuiuu 1111111111111111111�1111111111 ■ll�Illlliililllllllllllllllll 111 11 .1 111 1111 111 41 1 ■114111 1 1�1111111 ■.■.N C ■N■■ ■..■.1 1■N. ■.C. 1 G ■1. •r41 ■I ■0■0 u..■.........■ NN UU EEENEN ENEE E..... ■C■■■■■. MI NMEEMMEMNENE ■d■ tl i- i1 1111111i�111111111111 1111111111111� IIIIII/I1i 1 Lip) ip NW. LEGEND 500 YEAR FLOOD 100 YEAR FLOOD 50 YEAR FLOOD 10 YEAR FLOOD STREAM BED CROSS SECTION LOCATION 50 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 STREAM DISTANCE IN MILES ABOVE MOUTH 2.6 2.8 3.0 3.2 3.4 170 150 130 110 90 70 50 La- 04P 220 200 180 160 140 120 fin 11111111111111111111111111111111111111 i ii1111111111111111111111111111111111_ inn II ti �11. 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111611111111111111111111111111111 1111111111 MMUMMEMEMAIUMEMEMMEMIUMNEENNEMEMMENUMEMEMENMEMEMEMINENNEMENEEWAIMMEMMEMMEMMEMMINEMEMEMMENNEM 111 11 di RI�11� Y� 11 •goo u or o� o 1 0 o���v-�es ��a�o �o��e° ���o 'e Tip �n i01 'I ��i e ta 11 111 11111110011111111111111111111111111111111111111111111111111111111 iii iii ��ii� 'M�u �eJi■ �n EiM mmom mimmilmmimmommummummmummomminomoLammoRQVgammimmummommommommommmommummommummormommommommmium mmmmmuei-mamaimmmmmmarmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmpmmmmmrmmmmmmmummmmwmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mum= mmummilimmilmmimminimmilmminliligitiniallIIIIIIIIIIIIIIMILIIIIIIILIIIIIIIIIIIIIMMIMINIMIIIIIIIIIIIIIMI 11:11111: 1 0 EMI rai �o a�� u�' �`ioi a rni 100 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 STREAM DISTANCE IN MILES ABOVE MOUTH LEGEND 500 YEAR FLOOD 100 YEAR FLOOD 50 YEAR FLOOD 10 YEAR FLOOD STREAM BED CROSS SECTION LOCATION 5.4 5.6 220 200 180 160 140 120 100 f/) W CC Ci- CD RI 14 CO OD CO W Zmo 05P N W UJ 06P 300 280 260 240 220 200 180 5.6 Io®® I®®®®®® o®®® No®®® oI®® I® I®® I®®®® E® o® I ®®®IIIIII®®EE ®EMOzMm®® m®® oI®® EEV®®®®®®® om m®®®®®® oIo®MININE m om l111E111111E1111 E!!! i!!!!!!!!!! I!!!!!!!!!!!!! 1 E!!!!!!!! E!!!!! I !!!!!!!!E 11111111 111111111111111111111111 111111111111111111111111111 111 111111111111E11111111111111111111111111111E11111E11111E111111011 I i ■■RPCRZ■■■■.■.■■■■■.■■ 1■■.■■.■■■■■■■■■.■■.■■■■■.■■■■■■> r■■■■■■■■■■■■■■.■■■■■■■..■.■■■■■■■■■■■■■■■■■■■■■ M1■■.■..■..■.■■■■■ ■■.■■■o.O ■d,p•■■■.■■■■■■■■■■■ T ....e..■■■ E■■■■■.■. We...■■.■.■..:..■■■■■.. E.■...■..■■..■■..■■■■..■■...■■■.■..■.■■■.. E.■■.■■■.■■■■■.__ VOMME.rl■■■ ■E■■�.■■.■e■.e...■■. W■■ r■■■■■■■■■WMEMM.■■■■■■■■■■■■■ e■■■■■■.■■■.■■■.■■■■■■.■■■.■.■■ ERCRMOOM ME■■.e■.Ni■■■■■■■■■■■■■■■ r..■■ re■.■.■■■■ m■■ u ■e■E■.■..■■■■■■■ piRsac ■.■■■■■..mm.■■■i■■■■■■■■■■■■■■■ ■■■■...■■■■.■..■M ■■■■■..■■■■MEM ....■■■■■e■.■■ ■e■■■■■■■■■■■■.■■■■■ ■.■■■■■■M_- -C E2MME M■■■■M._aW.■■■■■■■■■■■■■■■■■■■■ U■■ rM■■■■■■■■ R■ E_ ■.■.■.g... AGM■■■■■■ E2MINI■■■.■■■■■■■.■■■■■■■■.■ ■■■e■■■■.■■■■■■■.■■ E.■ ei■■■.. e■..■ e■■■■ ■■.e■ P. 02MR2M■.■■..■ I,.e■■■■..■.■■■■■■■■■■.■■■■■■■■ C■■L► i■■■■■■■■ II■ ■■..■■■■■..■■mCmostaGC■■.■■ m% EEEEEE a mm omm u �E�� E E C M M ummom EE EEE E EEEE E EE:: EE M EEEN I MME EE EEEMEMEE EEE EEEEEE E EI 4 EE �111111111111111111111111111111111111111111 ■e..■■ ■11■ ■■I! =m.mmilmmommimmimPMC°CM CaiC■■.■ CCRC.■■■■■....■■■■■■ i ■■.■EE 2C2ERIROe- .mini R∎2∎M IM■■ PEi.■■■■.■■■■■■■. e■■... ■.■e■■■■.■■■■■■■.■■■■■■■ 111110111111111■1nMEM MAM :»G1G■i■ill 11111111111111111 1: 111111E11E11111111E1111EEEE1111111E11111111111111111111111 11111 1111111► E_ am 1 ounisanii1i111111i111111111owe E �iII ■T.■■■■■.■■.ol =1C�i� =iMENMO 11■■■■.■■■■.■■■■. ■CMPIMIR■■■ ■E. Sir■ ell■.■■.■■■■..■ 11■■■■■ ■...IMC�!E.vr_: \!W ■■1.■ ■■MOMM W...■■■■■■.■. I1 ■E■■.■■.. ■II ■.e O�1■■■■■■■..■.. ■EE■■■■■.■■..... MO. E ■II■.■.■..■■.■■.■■■■■■■.. x..11. 11■! 111111!!1 1111 II I,. E 1; I; E 1 E E!! EEEEI! EEEEEIEE1� 11111EEIEEIEEIEEEIEEEEEEI� IIIIIIIIEIEEEEE11111 II11 E1 1� 1 1 1111111 11 1111E ■■■lU11 ■E /i EEEEEE'•.E:: •PdII•... :111111 1111 III Ililllll 111111 IIIIIIilill Iilli IIIIIIIIII II II 11 1111111 111111. I:"''■' I'■■"'■■■■'■ 11111111111E1111111111111111111111111111111111111111111111111111111111111111111 /!C GigN i■■OMM I■■■■■■■■■■■■■■■■■■■...■■■.■■■■■■■■.■■■■■.■■■■■eeee■... !l Gi.■ 11.■■■.►■■■■■■..■■■.■■■■■■■■..■.■■■■e■■■.■■...■■■■■■■■.■■■■■■.. 11.■ MMO.■■■■■■■.■■■..■■■■■■■■..■■■■■.■■■■■■■■...■.■■■■■■■■■.■■■■ .■■■■.MRaMM..■■■■■■ e■■■■.■.■■■■■■...■■■■.■■■■■■■■■.■.■■■■■.....■■■■ 1111111111111111111 A■04%, 1 11 ■■■I LT m.■...■ 1[71lI IijI I ICON I...■■■ I MN 1 IEiI I■.■■■■■■■....■■.■■■...■■■■■.■■■■ IMINIMAMIIII IMANSIM SEA C\► i\ ti■■■■■■■■■■■.■■■■■■■■■■■...■.■■■. 5.8 6.0 6.2 6.4 6.6 6.8 7.0 STREAM DISTANCE IN MILES ABOVE MOUTH 7.2 7.4 7.6 LEGEND 500 YEAR FLOOD 100 YEAR FLOOD 50 YEAR FLOOD 10 YEAR FLOOD STREAM BED CROSS SECTION LOCATION 7.8 8.0 300 280 260 240 220 200 180 400 380 360 340 320 300 280 260 240 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 mommummul nnwn on nnm wn '�n�e ■"'IF': 1111 ■C eee e e eee a ��WN ■■u ISMm mar ■■..■m■...■ c■■■..■■.■.■...■■■■.■.■■.■.■■■ .■.E ■MHAMM.e■■.■■■..■.....■.■ ...■■■....■..■■.■■....■.■■.■..■.■....■....■..■MM EMM■ EMMEMEM EMI. EMMU■■. ■W.■.■■.■..■■.■..■.■■■■..■.■■■ L'■.■r 7■■.■■.■■■■■■.■■■■...■.■.■■.■.■■■.■■■■ Di.■■ 11■. eaF MEMMI ..■.■..U■■...■■■..■■ .......■.■.■.■■■.■■■..■■■.ECRAA PPE■ 11 M ■EMMEM.■■...■. u■■.■.■■..■■..■■.■■..■■..■.■.■■■■■■■■.■■■■.■.■■.■..i pG■ I L■.■■ IG. u■.■.........! r■....■..■■■..■■■■■■.■......■... ■.■EmC' /.i1A■■■.. ■.11...■...■.■ E AMEMME.■..■..!.■.■.■■■..■........■ EMEME MPE .2ROSEMENGEG■■■.■■ ■UMMEM..■■.. ■.■.■i-e■■■■■■■..■■.■.■ ■..!!m 'l o-- G.■meJ■■..■ ■.■11. g■■... ■..■ummi■.■.■m■mm.mili!!riilACm: esc2awf■ i.■■■■.■■..■ J11.■ F;..■■.■■..■..::■■■. F: i■!' Jmfi. m9=■■■■.■.■ m. m mm■ 11■. ■■.■■■.■■■■■■■.m■■■■■■...■.■... C■■.■ C... M.■■.......■■ E■■■. AR:.M:.•_■_.: i.■■...■.■■.■...... 11. e■..■ mialiii■.■ ■■■■■■■■.■.mmil 11.■ s■■■.■■...■.._■■.■.■■.■..■.■...■.■■■.....■...■■.■■■ �i■..■■.■■..■ r:.■...■..■..■..■■■•- 1■....■■■..■..■.■ C C: Gii■■.■■■..■■.■■.. ■.......■.■■■...■■.M MEM ME.■■■■.OMEMO. ■■■.■.■..■.11■.■■ I■■■■I♦■■TT iI■■.... E■■■■■■■■■■■■■■.■■..■■■■ ..■■■....■.■..■..■■■'E M MM■■■■■..■.FWMEM■■■...■■ ■11■■.■ I ■%V!I. :%x ZwN■...■....■■...■■.■...■■.■■.■■..■■ ■■.■.■■.■■...■■■.■M.■ ■■..■.■■■■E7..■.■■.......11■■■. ■A IMA ANMEMME■..■...■..■......■.■■.■.■■.■■■■■■ ..■.■.■■.WEMME..■.■■■■■■■■■■.■. .■.■■■■■MEMMU■■.■■..■■.■.11■■■■ 11■■■■■ MEMEMU•••• I■■■■■■■.■■.■■.■ eeeeeeeee' eeeeeeeeeeeeeee Ieeeeeeeeeeel ■....n MEMM....■.■.■ I. 11.■.. .■.■■..�1:� �IIIIIIII� r; ".A=l..■..■■■■■.■....■.■.■..■.� IIIIIINII 11111111111111 Illllllleeeeeee��eeeeeeeeeee �eeeeeeeeeeee��eeee IIHIII IU I IIIHIIHLLiIHIIIIIIIIII!uI IIuIuI!! .■■..■..■...■■■■..■..■■■..■i/!. ■.■■.u i■! C_ C. F. afi■.. 11■ Pe: l■ ■.........■u... il.■■.■■.■.. m�: ia.■. ■_...1•!. iii. 11■.■.■. i 1 m�i■1■■■■■■..■■.■■.■■.■■■.■■■■■.■■■.■■.■■.■■■■■ Illlllllllllilillllli 1■■.■.......■....■.......■...........■........■..■......■..■■■.. •........u.u.U.. E i i lIM M IIM MMMEMMEMEMEREMMEMMEMMEMMEMEMM1NMEM ■EMEMEMMEMMUMMEMM �MMMEEMMEMMIIM ■EMMEMEM ®IMMIIMEMMEMM��MMEMM�� ■M ...............■d iiiiil11111 e�ee I Alli eeeeee��eeee�eeeeee�e ee� eee�eeee�eeeeeee eeeee eeeeeeee�e ■u■■■ 1.■.■.■ M.■■..................■■■.■..■......■.....■...■..■.■.....■■..■.■..■.■.■■ ■■...■■■.■1■..■■.■...■.■■■■■.■ ■■..■■...u......■■ I■■■Wi....■.■■■..■■■■■..■.■ r. i.■►..■.■.■■.■■■■■■■■■■■■.■■..■■■.■■.■■■■■■■■.■■.■.■.■■■.■.. U• UU..... U•• U•. mmmmmmmmm■.■■....■■....■■■■■■■■..■■......■■...■■.■..■.■■■..■■■■■.■■■..■.■■. ■■■■■■■■■■■■■■■■■■■■U■■■■■■U ■.........t eeeeeeeeeeeee�eeeeei� eee eele eeeeeeeeeeee Ie eeeee lee eeeeeeeeeeeeeeeee e e ■■■■.■.■■.■.■■■.�E %Ci.■■ z. c._S IMMEM.■ M....■■■■...■.■.■....■.■...■....■....■■■.■.■.■■..■....■.■■ ■■...■U.■..■■■■■...■■■■■■E■■■■■ OMMm.■■■■... MEMOMO:: N% SROME MEMEMMEMOMMOMMIMMEMINIM 1 11111111111111111111111IM IMM MMIIME111111111e11EMMEMM EMEMMUMU OMON 111 M O MWOMMAMMEM .■.E■.■■■...■■.■ z.■. aC■■..■...■ u.■■ u E...■■■■■■.■■.■■.■■.■■..■..■..■.■.■■■.. ■■■.■n.■■■ u.■u..■.■..■.. ME./■■...■■.■.■■■■......■.■.■■■.■■..■.■■■■■■..■..■■.■■■.. ■■■■■■■■wmam MMOMMINCUMMEMOM EMME ■■■I sus u■■.■iriII.■■■■.■■....■■ 1 ■■■■■■■■■■■■■■■■■■■a! I■■■■■ in► a■■......■■■..■ o►■■....■....■..■■■..■. LEGEND 500 YEAR FLOOD 100 YEAR FLOOD 50 YEAR FLOOD 10 YEAR FLOOD STREAM BED CROSS SECTION LOCATION STREAM DISTANCE IN MILES ABOVE MOUTH 9.8 10.0 400 380 360 340 320 300 280 260 240 01P